સમીકરણ ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}\,$ માં ${\rm{x}}$ કિંમત =.....
$\frac{4}{3}$
$\frac{3}{2}$
$\frac{2}{1}$
$\frac{5}{3}$
જો $p, q$ અને $r$ $(p \ne q,r \ne 0),$ વાસ્તવિક સંખ્યા છે કે જેથી $\frac{1}{{x + p}} + \frac{1}{{x + q}} = \frac{1}{r}$ ના ઉકેલો સમાન મુલ્ય અને વિરુદ્ધ ચિહનના હોય તો બંને ઉકેલોના વર્ગ નો સરવાળો મેળવો.
સમીકરણ ${x^3}(x + 1) = 2(x + a)(x + 2a)$ ને ચાર ઉકેલો મળે તે માટે $a$ નો ગણ મેળવો
અહી $S=\left\{ x : x \in R \text { and }(\sqrt{3}+\sqrt{2})^{ x ^2-4}+(\sqrt{3}-\sqrt{2})^{ x ^2-4}=10\right\} \text {. }$ હોય તો $n ( S )$ ની કિમંત મેળવો.
જો $\alpha , \beta , \gamma$ એ સમીકરણ $x^3 + qx -r = 0$ ના ઉકેલો હોય તો ક્યાં સમીકરણના ઉકેલો $\left( {\beta \gamma + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha + \frac{1}{\beta }} \right),\,\left( {\alpha \beta + \frac{1}{\gamma }} \right)$ થાય ?
સમીકરણ $\left| {\sqrt x - 2} \right| + \sqrt x \left( {\sqrt x - 4} \right) + 2 = 0\left( {x > 0} \right)$ ના ઉકેલોનો સરવાળો ..... થાય