વિધાન $-1$ : સમીકરણો  $x + \left( {\sin \,\alpha } \right)y + \left( {\cos \,\alpha } \right)z = 0$ ;$x + \left( {\cos \,\alpha } \right)y + \left( {\sin \alpha } \right)z = 0$ ;$x - \left( {\sin \,\alpha } \right)y - \left( {\cos \alpha } \right)z = 0$ ; ને શૂન્યતર ઉકેલ એ $\alpha $ ની માત્ર એકજ કિમત કે જે અંતરાલ $\left( {0\,,\,\frac{\pi }{2}} \right)$ તેના માટે ધરાવે છે .

વિધાન $-2$ : સમીકરણ કે જે $\alpha $ સ્વરૂપ માં છે

$\left| {\begin{array}{*{20}{c}}
  {\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha } \\ 
  {\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha } \\ 
  {\cos {\mkern 1mu} \alpha }&{ - \sin {\mkern 1mu} \alpha }&{ - \cos {\mkern 1mu} \alpha } 
\end{array}} \right| = 0$

નું એક માત્ર બીજ અંતરાલ $\left( {0\,,\,\frac{\pi }{2}} \right)$ માં છે .

  • [JEE MAIN 2013]
  • A

    વિધાન $- 1$ સત્ય છે અને વિધાન  $-2$ સત્ય છે વિધાન $-2$ એ વિધાન $-1$ ની સમજૂતી આપતું નથી .

  • B

    વિધાન $- 1$ સત્ય છે અને વિધાન  $-2$ સત્ય છે વિધાન $-2$ એ વિધાન $-1$ ની સમજૂતી આપે છે .

  • C

    વિધાન $- 1$ સત્ય છે અને વિધાન $-2$ એ અસત્ય છે .

  • D

    વિધાન $- 1$ અસત્ય છે અને વિધાન $-2$ એ સત્ય છે .

Similar Questions

જો $a, b, c$ એ ત્રણ સંકર સંખ્યા છે કે જેથી $a^2 + b^2 + c^2 = 0$ અને  $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ તો $K$ ની કિમંત મેળવો.

જો રેખીય સમીકરણો $x + y+  z = 5$ ; $x + 2y + 3z = 9$ ; $x + 3y + \alpha z = \beta $ એ અનંત ઉકેલ ધરાવે છે તો  $\beta  - \alpha $ મેળવો.

  • [JEE MAIN 2019]

ધારોકે $A(-1,1)$ અને $B(2,3)$ બે બિંદૂઓ છે અને $P$ એ રેખા $A B$ ની ઉપરની બાજુ નું એવુ ચલ બિંદુ છે કે જેથી $\triangle P A B$ નું ક્ષેત્રફળ $10$ થાય. જે $\mathrm{P}$ નો બિંદુપંથ $\mathrm{a} x+\mathrm{b} y=15$ હોય, તો $5 \mathrm{a}+2 \mathrm{~b}=$ ...........

  • [JEE MAIN 2024]

જો ${a_1},{a_2},{a_3}.....{a_n}....$ એ સમગુણોતર શ્રેણીમાં હોય તો  $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ ની કિમંત મેળવો.

  • [AIEEE 2005]

જો $ A, B, C$  એ ત્રિકોણના ખૂણા હોય , તો $\left| {\,\begin{array}{*{20}{c}}{ - 1}&{\cos C}&{\cos B}\\{\cos C}&{ - 1}&{\cos A}\\{\cos B}&{\cos A}&{ - 1}\end{array}\,} \right| = $