જેના માટે સમીકરણ સંહતિ
$ x+y+z=4, $
$ 2 x+5 y+5 z=17, $
$ x+2 y+\mathrm{m} z=\mathrm{n}$
ને અસંખ્ય ઉકલો હોય, તેવી $m, n$ ની કિંમતો .......... સમીક૨ણ નું સમાધાન કરે છે.
$m^2+n^2-m-n=46$
$m^2+n^2+m+n=64$
$\mathrm{m}^2+\mathrm{n}^2+\mathrm{mn}=68$
$m^2+n^2-m n=39$
$\left| {\begin{array}{*{20}{c}}
1&x&y\\
2&{\sin x + 2x}&{\sin y + 2y}\\
3&{\cos x + 3x}&{\cos y + 3y}
\end{array}} \right|$ મેળવો.
અહી $\theta \in\left(0, \frac{\pi}{2}\right)$ આપેલ છે. જો સમીકરણ સંહતિ
$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$
ને શૂન્યતર ઉકેલ ધરાવે છે તો $\theta$ ની કિમંત મેળવો.
$\left| {\,\begin{array}{*{20}{c}}2&8&4\\{ - 5}&6&{ - 10}\\1&7&2\end{array}\,} \right|$ = . . ..
$k$ ની કિમત . . . . માટે સમીકરણો $kx + 2y\,-z = 1$ ; $(k\,-\,1)y\,-2z = 2$ ; $(k + 2)z = 3$ એ એકાકી ઉકેલ ધરાવે .
જો $\lambda $ એ વાસ્તવિક સંખ્યા છે કે જેથી સુરેખ સમીકરણો $x + y + z = 6$
; $4x + \lambda y - \lambda z = \lambda - 2$ ; $3x + 2y -4z = -5$ ને અનંત ઉકેલ ધરાવે છે તો $\lambda $ તો એ . . . દ્રીઘાત સમીકરણનું બીજ થશે.