જો $A, B, C$ અનુક્રમે $5$ માંથી $4$ વાર, $4$ માંથી $3$ વાર અને $3$ માંથી $2$ વાર નિશાન સાધી શકે છે તો, તે પૈકી ચોક્કસ બે નિશાન સાધી શકે તેવી સંભાવના કેટલી થાય ?

  • A

    $13/30$

  • B

    $5/6$

  • C

    $17/30$

  • D

    આપેલ પૈકી એક પણ નહિં

Similar Questions

ધારો કે, $A, B, C$ એ  $3$ નિરપેક્ષ ઘટનાઓ એવી છે કે જેથી $P(A)\,\, = \,\,\frac{1}{3}\,,\,\,P(B)\,\, = \,\,\frac{1}{2}\,,\,\,P(C)\,\, = \,\,\frac{1}{4}\,.$ $3$ ઘટનાઓ પૈકી ચોક્કસ $2$ ઘટનાઓ બનવાની સંભાવના શોધો.

ધારો કે $A$ અને $B$ બે નિરપેક્ષ ઘટનાઓ છે. $P(A)\,\, = \,\,\frac{1}{5},\,\,P(A\,\, \cup \,\,B)\,\, = \,\,\frac{7}{{10}}\,$   હોય તો $P(\overline B )$ બરાબર શું થાય ?

નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.4.$  

$P(A \cap B)$ શોધો

જો $A$,$B$ અને $C$ એ ત્રણ ઘટના એવી છે કે જેથી $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ અને  $P\left( {\bar A \cap B \cap C} \right) = 0.1$ થાય તો $P$(ઘટના $A$,$B$ અને $C$ માંથી ઓછામા ઓછા બે થાય) તેની કિમત મેળવો. 

એક પાસો નાંખતા, ધારો કે ઘટના $A,$ મળતી સંખ્યા $3$ કરતા વધારે હોય, ધારો કે ઘટના $B$ મળતી સંખ્યા $5$ થી નાની હોય, તો $ P(A \cup B)$ શું થાય ?