એક બોક્સમાં $10$ સારી અને $6$ ખામીવાળી વસ્તુઓ છે. તેમાંથી ગમે તે એક વસ્તુ પસંદ કરવામાં આવે તો તે સારી અથવા ખામીવાળી નીકળવાની સંભાવના કેટલી?
$\frac{{24}}{{64}}$
$\frac{{40}}{{64}}$
$\frac{{49}}{{64}}$
$\frac{{64}}{{64}}$
ધારો કે અન્ય $JEE$ ની પરીક્ષા ન આપે તેની સંભાવના $p=\frac{2}{7}$ છે, જ્યારે અજય અને વિજ્ય બંને પરિક્ષા આપે તેની સંભાવના $\mathrm{q}=\frac{1}{5}$ છે. તો અજય પરિક્ષા આપે અને વિજ્ય પરિક્ષા ન આપે તેની સંભાવના ....................છે.
એક પાસાની બે બાજુઓમાંથી પ્રત્યેક પર સંખ્યા $“1”$ દર્શાવેલ છે, ત્રણ બાજુઓમાં પ્રત્યેક પર સંખ્યા $“2”$ દર્શાવેલ છે અને એક બાજુ પર સંખ્યા $“3”$ છે. જો આ પાસાને એકવાર ફેંકવામાં આવે તો નીચે આપેલ શોધો : $P($ $3$ નહિ)
એક પાસો ફેંકવામાં આવે છે. નીચે આપેલ ઘટનાઓનું વર્ણન કરો : $A :$ સંખ્યા $7$ કરતાં નાની છે. $A \cup B$ શોધો
રજાઓમાં વીણાએ ચાર શહેરો $A, B, C$ અને $D$ ની યાદચ્છિક ક્રમમાં યાત્રા કરી છે. શું સંભાવના છે કે એણે $A$ ની યાત્રા સૌથી પહેલાં અથવા બીજા ક્રમે કરી ?
એક પાસો બે વખત ફેંકતા, તેના અંકોનો સરવાળો $6$ હોય, તો તે પૈકી ઓછામાં ઓછી એક વખત $4$ મળવાની સંભાવના કેટલી થાય ?