એક થેલામાં $4$ લાલ અને $ 4$ વાદળી દડા છે. ચાર દડા એક પછી એક થેલામાંથી લેવામાં આવે છે. તો પસંદ થયેલા દડા ક્રમિક રીતે ભિન્ન રંગના હોવાની સંભાવના શોધો.
$4/27$
$6/35$
$7/32$
$5/29$
$A , B, C$ try to hit a target simultaneously but independently. Their respective probabilities of hitting targets are $\frac{3}{4},\frac{1}{2},\frac{5}{8}$. The probability that the target is hit by $A$ or $B$ but not by $C$ is
$A $ અને $B$ એક ચોક્કસ સવાલને સ્વતંત્ર રીતે ઉકેલે તેની સંભાવના અનુક્રમે , $\frac{1}{2}$ અને $\frac{1}{3}$ છે. જો $A$ અને $B$ બંને સ્વતંત્ર રીતે સવાલને ઉકેલવાનો પ્રયત્ન કરે, તો બેમાંથી એકને જ સવાલનો ઉકેલ મળે તેની સંભાવના શોધો
જો ઘટનાઓ $X$ અને $Y$ છે કે જેથી $P(X \cup Y=P)\,(X \cap Y).$
વિધાન $1:$ $P(X \cap Y' = P)\,(X' \cap Y = 0).$
વિધાન $2:$ $P(X) + P(Y = 2)\,P\,(X \cap Y)$
સારી રીતે ચીપેલાં $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ઘટનાઓ $E$ અને $F$ નિરપેક્ષ છે ?
$E :$ ‘પસંદ કરેલ પત્તે રાજા અથવા રાણી છે”. $F : $ ‘પસંદ કરેલ પતું રાણી અથવા ગુલામ છે”.
જો $A$ અને $B$ એવી ઘટનાઓ છે કે જેથી $P(A\, \cup \,\,B)\,\, = \,\,\frac{3}{4},\,\,P(A\,\, \cap \,\,B)\,\, = \,\,\frac{1}{4}\,,\,P(\overline A )\,\, = \,\,\frac{2}{3},\,$ હોય , તો $P(\overline A \,\, \cap \,\,B)\,$ બરાબર શું થાય?