એક ધોરણના $60$ વિદ્યાર્થીઓમાંથી $NCC$ ને $30, NSS$ ને $32$ અને બંનેને $24$ વિદ્યાર્થીઓએ પસંદ કર્યા છે. જો આ બધામાંથી એક વિદ્યાર્થી યાદેચ્છિક રીતે પસંદ કરવામાં આવે, તો આપેલ ઘટનાઓની સંભાવના શોધો.વિદ્યાર્થીએ $NSS$ ને પસંદ કર્યું છે. પરંતુ $NCC$ ને પસંદ કર્યું નથી.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A$ be the event in which the selected student has opted for $NCC$ and $B$ be the event in which the selected student has opted for $NSS$.

Total number of students $=60$

Number of students who have opted for $NCC =30$

$\therefore $ $P(A)=\frac{30}{60}=\frac{1}{2}$

Number of students who have opted for $NSS =32$

$\therefore $ $P(B)=\frac{32}{60}=\frac{8}{15}$

Number of students who have opted for both $NCC$ and $NSS = 24$

$\therefore $ $P ( A$ and $B )=\frac{24}{60}=\frac{2}{5}$

The given information can be represented by a Venn diagram as

It is clear that Number of students who have opted for $NSS$ but not $NCC$

$=n(B-A)=n(B)-n(A \cap B)=32-24=8$

Thus, the probability that the selected student has opted for $NSS$ but not for $NCC$ 

$=\frac{8}{60}=\frac{2}{15}$

Similar Questions

જો $A, B, C$ એ કોઈ યાદચ્છિક પ્રયોગ સાથે સંકળાયેલ ત્રણ ઘટનાઓ હોય, તો સાબિત કરો કે $P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$

ત્રણ વ્યક્તિ  $P, Q$ અને $R$ એ સ્વતંત્ર રીતે એક નિશાન તકે છે . જો તેઓ નિશાન તાકી શકે તેની સંભાવના અનુક્રમે $\frac{3}{4},\frac{1}{2}$ અને  $\frac{5}{8}$ હોય તો $P$ અથવા $Q$ નિશાન તાકી શકે પરંતુ $R$ તાકી ન શકે તેની સંભાવના મેળવો.

  • [JEE MAIN 2013]

એક અસમતોલ સિક્કો ઉછાળવામાં આવે છે.જો છાપ આવે તો બે અસમતોલ પાસાને ઉછાળીને તેના પરના અંકોનેા સરવાળો નોધવામાં આવે છે.અને જો કાંટો આવે તો સરખી રીતે છીપેલાં $11$ પત્તાં કે જેની પર $2,3,4,…,12$ અંકો લખેલો છે તેમાંથી એક પત્તું પસંદ કરવામાં આવે છે અને તેના પરનો અંક નોંધવામાં આવે છે.તો નોધાયેલી સંખ્યા $7$ અથવા $8$ હોય,તેની સંભાવના મેળવો.

  • [IIT 1994]

જેની ઉપર પૂર્ણાકો $1, 2, 3$ લાલ રંગથી અને $4, 5, 6$ લીલા રંગથી લખેલ હોય તેવા પાસાને ફેંકવામાં આવે છે. પાસા પર મળતો પૂર્ણાક યુગ્મ છે તે ઘટનાને $A$ વડે તથા પાસા પરનો પૂર્ણક લાલ રંગથી લખેલ છે તે ઘટનાને $B$ વડે દર્શાવીએ, તો ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે ?

જો $A$ અને $B$ કોઈ ઘટના હોય તો $P (A \,\,\cup \,\, B) = …….$