- Home
- Standard 11
- Mathematics
એક ધોરણના $60$ વિદ્યાર્થીઓમાંથી $NCC$ ને $30, NSS$ ને $32$ અને બંનેને $24$ વિદ્યાર્થીઓએ પસંદ કર્યા છે. જો આ બધામાંથી એક વિદ્યાર્થી યાદેચ્છિક રીતે પસંદ કરવામાં આવે, તો આપેલ ઘટનાઓની સંભાવના શોધો.વિદ્યાર્થીએ $NSS$ ને પસંદ કર્યું છે. પરંતુ $NCC$ ને પસંદ કર્યું નથી.
Solution
Let $A$ be the event in which the selected student has opted for $NCC$ and $B$ be the event in which the selected student has opted for $NSS$.
Total number of students $=60$
Number of students who have opted for $NCC =30$
$\therefore $ $P(A)=\frac{30}{60}=\frac{1}{2}$
Number of students who have opted for $NSS =32$
$\therefore $ $P(B)=\frac{32}{60}=\frac{8}{15}$
Number of students who have opted for both $NCC$ and $NSS = 24$
$\therefore $ $P ( A$ and $B )=\frac{24}{60}=\frac{2}{5}$
The given information can be represented by a Venn diagram as
It is clear that Number of students who have opted for $NSS$ but not $NCC$
$=n(B-A)=n(B)-n(A \cap B)=32-24=8$
Thus, the probability that the selected student has opted for $NSS$ but not for $NCC$
$=\frac{8}{60}=\frac{2}{15}$