જો $A$ અને $B$ કોઈ ઘટના હોય તો $P (A \,\,\cup \,\, B) = …….$
$P (A) + P (B)$
$P(A) + P (B)+ P (A \cap B)$
$P(A) + P (B)- P (A \cap B)$
$P(A) . P (B)$
એક છાત્રાલયમાં $60\%$ વિદ્યાર્થીઓ હિન્દી સમાચારપત્ર વાંચે છે, $40\%$ અંગ્રેજી સમાચારપત્ર વાંચે છે અને $20\%$ હિન્દી અને અંગ્રેજી બંને સમાચારપત્ર વાંચે છે. એક વિદ્યાર્થી યાદૈચ્છિક રીતે પસંદ કરવામાં આવ્યો.જો તે અંગ્રેજી સમાચારપત્ર વાંચતો હોય, તો તે હિન્દી સમાચારપત્ર વાંચે છે તેની સંભાવના શોધો.
ત્રણ ઘટનાઓ $A, B$ અને $C,$ માટે $P($ માત્ર એકજ ઘટના $A$ અથવા $B$ બને $) = P \,($ માત્ર $B$ અથવા $C$ એક્જ બને $)= P \,($ માત્ર $C$ અથવા $A$ એકજ બને $)= p$ અને $P$ (ત્રણેય ઘટનાઓ એક્જ સાથે બને $) = {p^2},$ કે જ્યાં $0 < p < 1/2$. તો ત્રણેય ઘટનાઓ $A, B$ અને $C$ પૈકી ઓછામાં ઓછી એક્જ ઘટના બને તેની સંભાવના મેળવો.
એક થેલામાં $4$ લાલ, $5$ સફેદ અને $6$ કાળા દડા છે. ત્રણ દડા યાર્દચ્છિક રીતે પસંદ કરવામાં આવે, તો તેઓ ભિન્ન રંગના હોવાથી સંભાવના કેટલી થાય ?
બે પાસા સ્વતંત્ર રીતે ઉછાળવામાં આવે છે. ધારો કે પહેલા પાસા પર આવેલ સંખ્યા એ બીજ પાસા પર આવેલ સંંખ્યાથી નાની હોય તે ઘટના $A$ છે, તથા પ્રથમ પાસા ૫ર યુગ્મ સંખ્યા આવે અને બીજા પાસા પર અયુગ્મ સંખ્યા આવે તે ઘટના $B$ છે.વધુમાં ધારોકે પ્રથમ પાસા પર અયુગ્મ સંખ્યા આવે અને બીજા પાસા પર યુગ્મ સંખ્યા આવે તે ઘટના $C$ છે.તો,:
ઘટનાઓ $A$ અને $B$ એવા પ્રકારની છે કે $P(A) = 0.42, P(B) = 0.48$ અને $P(A$ અને $B) = 0.16$.$ P(B-$ નહિ) શોધો.