એક થેલામાં $4$ લાલ, $5$ સફેદ અને $6$ કાળા દડા છે. ત્રણ દડા યાર્દચ્છિક રીતે પસંદ કરવામાં આવે, તો તેઓ ભિન્ન રંગના હોવાથી સંભાવના કેટલી થાય ?
$23/91$
$24/91$
$25/91$
આપેલ પૈકી એક પણ નહિં.
જો ત્રણ પેટી માં રહેલા દડોઓ $3$ સફેદ અને $1$ કાળો, $2$ સફેદ અને $2$ કાળો, $1$ સફેદ અને $3$ કાળો દડો છે. જો એક દડો યાર્દચ્છિક રીતે દરેક પેટીમાંથી પસંદ કરવામાં આવે છે તો પસંદ થયેલ દડોઓ $2$ સફેદ અને $1$ કાળો હોય તેની સંભાવના મેળવો.
ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ અને $P(E$ અને $F )=\frac{1}{8},$ તો $P(E$ નહિ $F$ નહિ) શોધો.
બે થેલી $A$ અને $B$ અનુક્રમે $2$ સફેદ, $3$ કાળા, $4$ લાલ અને $3$ સફેદ, $4$ કાળા, $5$ લાલ દડા ધરાવે છે. જો એક દડો $A$ થેલીમાંથી ઉપાડી $B$ થેલીમાં મૂકવામાં આવે છે. હવે જો દડો $B$ થેલીમાંથી ઉપાડવામાં આવે, તો આપેલ માહિતીના આધારે $B$ થેલીમાંથી સફેદ દડો ઉપાડવાની સંભાવના કેટલી થાય ?
બે વિદ્યાર્થીઓ અનિલ અને આશિમા એક પરીક્ષામાં હાજર રહે છે. અનિલની પરીક્ષામાં પાસ થવાની સંભાવના $0.05$ અને આશિમાની પરીક્ષામાં પાસ થવાની સંભાવના $0.10$ છે. બંનેની પરીક્ષામાં પાસ થવાની સંભાવના $0.02 $ છે. નીચેની ઘટનાની સંભાવના શોધો : અનિલ અને આશિમા બંને પૈકી કોઈ પણ પરીક્ષામાં પાસ નહિ થઈ શકે.
એક સમતોલ સિક્કા અને એક સમતોલ પાસાને ઉછાળવામાં આવે છે, ધારો કે ઘટના $A$, ‘સિકકા પર છાપ મળે' તે અને ઘટના $B$ ‘પાસા પર $3$ મળે તે દર્શાવે છે. ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે નહિ તે ચકાસો.