આપેલ બે નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.6$ હોય, તો $ P (A$ નહિ અને $B$ નહિ) શોધો.
$P($ neither $A$ nor $B)$ $=P\left(A^{\prime} \cap B^{\prime}\right)$
$=\mathrm{P}\left((\mathrm{A} \cup \mathrm{B})^{\prime}\right)$
$=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$=1-0.72$
$=0.28$
જો $P (A) =0.5, P (B)=0.7, P (A \cap B) =0.6$ તો $ P (A \cup B) = …. ($જયાં અને આપેલી ઘટનાઓ છે.$)$
એક અસમતોલ સિક્કો ઉછાળવામાં આવે છે.જો છાપ આવે તો બે અસમતોલ પાસાને ઉછાળીને તેના પરના અંકોનેા સરવાળો નોધવામાં આવે છે.અને જો કાંટો આવે તો સરખી રીતે છીપેલાં $11$ પત્તાં કે જેની પર $2,3,4,…,12$ અંકો લખેલો છે તેમાંથી એક પત્તું પસંદ કરવામાં આવે છે અને તેના પરનો અંક નોંધવામાં આવે છે.તો નોધાયેલી સંખ્યા $7$ અથવા $8$ હોય,તેની સંભાવના મેળવો.
ધારો કે ઘટનાઓ $A$ અને $B $ માટે, $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ અને $P\left( {\bar A} \right) = \frac{1}{4}$ છે,તો ઘટનાઓ $A$ અને $B$. . . . . .
બે વિમાન $ I $ અને $ II$ એ ર્ટાગેટ પર બોમ્બ નાખવાના છે. વિમાન $ I$ અને $ II $ ની ર્ટાગેટ પર બોમ્બ લાગે તેની સંભાવના અનુક્રમે $0.3$ અને $0.2 $ છે. બીજુ વિમાન તોજ બોમ્બ ફેકંશે જો પહેલુ વિમાન ચુકી જશે, તો ર્ટાગેટને બીજા વિમાન વડે બોમ્બ લાગે તેની સંભાવના મેળવો.
$A$ અને $B$ નિરપેક્ષ ઘટના છે. તેમની સંભાવનાઓ $3/10$ અને $2/5$ છે. તો ચોક્કસ એક ઘટના બનવાની સંભાવના કેટલી થાય ?