જો વિર્ધાથી ગણિત,ભૌતિક વિજ્ઞાન અને રસાયણ વિજ્ઞાનમાં પાસ થાય તેની સંભાવના અનુક્રમે $m, p$ અને $c$ છે.આ વિષયમાંથી,વિર્ધાથી ઓછામાં ઓછા એક વિષયમાં પાસ થાય તેની શક્યતા $75\%$ છે,ઓછામાં ઓછા બે વિષયમાં પાસ થાય તેની શક્યતા $50\%$, ફક્ત બે વિષયમાં પાસ થાય તેની શક્યતા $40\%$ છે.તો નીચેના પૈકી કયો સંબંધ સત્ય બને.
$p + m + c = \frac{{19}}{{20}}$
$p + m + c = \frac{{27}}{{20}}$
$pmc = \frac{1}{{10}}$
$pmc = \frac{1}{4}$
ધારો કે $A$ અને $B$ બે નિરપેક્ષ ઘટનાઓ છે. $P(A)\,\, = \,\,\frac{1}{5},\,\,P(A\,\, \cup \,\,B)\,\, = \,\,\frac{7}{{10}}\,$ હોય તો $P(\overline B )$ બરાબર શું થાય ?
ધારો કે $X$ અને $Y$ ઘટનાઓ એવી હોય કે જેથી $P(X \cup Y) = P(X \cap Y).$
વિધાન $- 1 : $$P(X \cap Y ) = P(X' \cap Y') = 0$
વિધાન $- 2 :$ $P(X) + P(Y) = 2P(X \cap Y).$
$A$ અને $B$ માંથી ઓછામાં ઓછી એક ઘટના બનવાની સંભાવના $0.6$ છે. જો $A$ અને $B$ એક સાથે બનવાની સંભાવના $0.3$, હોય તો $P (A') + P (B') = ……$
જો $P (A) =0.5, P (B)=0.7, P (A \cap B) =0.6$ તો $ P (A \cup B) = …. ($જયાં અને આપેલી ઘટનાઓ છે.$)$
જો $A$ ને પરીક્ષામાં નાપાસ થવાની સંભાવના $1/5$ છે અને $B$ ની સંભાવના $3/10$ છે. તો $A$ અથવા $B$ ને નાપાસ થવાની સંભાવના કેટલી થાય ?