ઘટના $A$ અને $B$ છે. ઓછામાં એક ઘટના બને તેની સંભાવના $0.6,$ બન્ને ઘટના બને તેની સંભાવના $0.2$ છે. તો $P(A) + P(B)= …....$
$0.8$
$0.6$
$0.2$
$0.4$
જો $A$ ને પરીક્ષામાં નાપાસ થવાની સંભાવના $1/5$ છે અને $B$ ની સંભાવના $3/10$ છે. તો $A$ અથવા $B$ ને નાપાસ થવાની સંભાવના કેટલી થાય ?
આપેલ ઘટનાઓ $A$ અને $B$ માટે $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ અને $\mathrm{P}(\mathrm{B})=p .$ આપેલ છે. જો ઘટનાઓ નિરપેક્ષ હોય તો $p$ માં શોધો.
નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.5$ | $0.35$ | ......... | $0.7$ |
જો ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ અને $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ હોય, તો $P(A -$ નહિ અને $B-$ નહિ) શોધો.
એક પાસાને ઉછાળવામાં આવે છે. જો ઘટના $A$ પાસા પરની સંખ્યા ત્રણ કરતાં મોટી દર્શાવે અને ઘટના $B$ એ પાસા પરની સંખ્યા પાંચ કરતાં નાની દર્શાવે છે.તો $P\left( {A \cup B} \right)$ મેળવો.