ઘટના $A$ અને $B$ છે. ઓછામાં એક ઘટના બને તેની સંભાવના $0.6,$ બન્ને ઘટના બને તેની સંભાવના $0.2$ છે. તો $P(A) + P(B)= …....$
$0.8$
$0.6$
$0.2$
$0.4$
નિદેશાવકાશમાં કોઇ બે ઘટનાઓ $A$ અને $B$ માટે,
જો $A$ અને $B$ એવી ઘટનાઓ છે કે જેથી $P(A\, \cup \,\,B)\,\, = \,\,\frac{3}{4},\,\,P(A\,\, \cap \,\,B)\,\, = \,\,\frac{1}{4}\,,\,P(\overline A )\,\, = \,\,\frac{2}{3},\,$ હોય , તો $P(\overline A \,\, \cap \,\,B)\,$ બરાબર શું થાય?
ઘટનાઓ $A$ અને $B$ એવા પ્રકારની છે કે $P(A) = 0.42, P(B) = 0.48$ અને $P(A$ અને $B) = 0.16$.$ P(A-$ નહિ) શોધો.
ધારો કે $A, B, C $ જોડયુક્ત રીતે નિરપેક્ષ ઘટના હોય, જ્યાં $P(C)>0$ અને
$P(A \cap B \cap C)=0 $ હોય, તો $P(A' \cap B'|C) $ બરાબર શું થાય ?
$A $ અને $B$ એક ચોક્કસ સવાલને સ્વતંત્ર રીતે ઉકેલે તેની સંભાવના અનુક્રમે , $\frac{1}{2}$ અને $\frac{1}{3}$ છે. જો $A$ અને $B$ બંને સ્વતંત્ર રીતે સવાલને ઉકેલવાનો પ્રયત્ન કરે, તો બેમાંથી એકને જ સવાલનો ઉકેલ મળે તેની સંભાવના શોધો