ધારો કે ઘટનાઓ $A$ અને $B $ માટે, $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ અને $P\left( {\bar A} \right) = \frac{1}{4}$ છે,તો ઘટનાઓ $A$ અને $B$. . . . . .
નિરપેક્ષ છે પરંતુ સમસંભાવી નથી.
નિરપેક્ષ અને સમસંભાવી છે.
પરસ્પર નિવારક અને નિરપેક્ષ છે.
સમસંભાવી છે પરંતુ નિરપેક્ષ નથી.
જો $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}\,$ અને$P(A \cap B) = \frac{7}{{12}},$ , તો તેની કિમત $P\,(A' \cap B') = ........$
$A $ અને $B$ એક ચોક્કસ સવાલને સ્વતંત્ર રીતે ઉકેલે તેની સંભાવના અનુક્રમે , $\frac{1}{2}$ અને $\frac{1}{3}$ છે. જો $A$ અને $B$ બંને સ્વતંત્ર રીતે સવાલને ઉકેલવાનો પ્રયત્ન કરે, તો સવાલનો ઉકેલ મળે
જો $P (A) =0.5, P (B)=0.7, P (A \cap B) =0.6$ તો $ P (A \cup B) = …. ($જયાં અને આપેલી ઘટનાઓ છે.$)$
જો $A, B, C$ એ કોઈ યાદચ્છિક પ્રયોગ સાથે સંકળાયેલ ત્રણ ઘટનાઓ હોય, તો સાબિત કરો કે $P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$
એક ધોરણના $60$ વિદ્યાર્થીઓમાંથી $NCC$ ને $30, NSS$ ને $32$ અને બંનેને $24$ વિદ્યાર્થીઓએ પસંદ કર્યા છે. જો આ બધામાંથી એક વિદ્યાર્થી યાદેચ્છિક રીતે પસંદ કરવામાં આવે, તો આપેલ ઘટનાઓની સંભાવના શોધો.વિદ્યાર્થીએ $NSS$ ને પસંદ કર્યું છે. પરંતુ $NCC$ ને પસંદ કર્યું નથી.