- Home
- Standard 11
- Mathematics
પ્રથમ $n $ અયુગ્મ પ્રાકૃતિક સંખ્યાઓનું પ્રમાણિત વિચલન = …….
$\sqrt {\frac{{{n^2}\, - \,\,1}}{2}} $
$\sqrt {\frac{{{n^2}\, - \,\,1}}{3}} $
$\sqrt {\frac{{{n^2}\, - \,\,1}}{6}} $
$\sqrt {\frac{{{n^2}\, - \,\,1}}{{12}}} $
Solution
પ્રથમ $ n$ એકી પ્રાકૃતિક સંખ્યાઓના $S.D. $ માટે
$1, 3, 5, ……. , (2n – 1)$
$\sum x_i = 1 + 3 + 5 + …. + (2n – 1) = n^2$
$\sum x_i2 = 12 + 32 + 52 + …… + (2n – 1)^2$
$= [1^2 + 2^2 + 3^2 + ….. + (2n)^2] – [2^2 + 4^2 + …… + (2n)^2]$
$= [1 + 2^2 + 3^2 + ….. + (2n)^2] – 2^2[1^2 + 2^2 + ….. + n^2]$
$ = \,\,\,\frac{{2n(2n\,\, + \,\,1)\,(4n\,\, + \,\,1)}}{6}\,\, – \,\,4\,\,.\,\,\,\frac{{n(n\,\, + \,\,1)\,(2n\,\, + \,\,1)}}{6}$
$ = \,\,\,\frac{{n(2n\,\, + \,\,1)}}{3}\,[(4n\,\, + \,\,1)\,\, – \,\,2(n\,\, + \,\,1)]\,\,\,\,\,\,\,$
$ = \,\,\frac{{n(2n\,\, + \,\,1)\,(2n\,\, – \,\,1)}}{3}\,\, = \,\,\frac{{n(4{n^2}\, – \,\,1)}}{3}$
માંગેલું $S.D. $ $ = \,\,\,\sqrt {\frac{{\Sigma {\text{x}}_{\text{i}}^{\text{2}}}}{{\text{n}}}\,\, – \,\,{{\left( {\frac{{\Sigma {x_i}}}{n}} \right)}^2}} \,\,\,$
$\,\, = \,\,\sqrt {\frac{{4{n^2}\, – \,\,1}}{3}\,\, – \,\,{n^2}} \,\,\,\,\, = \,\,\sqrt {\frac{{{n^2}\, – \,\,1}}{3}} $
Similar Questions
જો આપેલ આવ્રુતિ વિતરણનો વિચરણ $50$ હોય તો $x$ ની કિમત મેળવો.
Class | $10-20$ | $20-30$ | $30-40$ |
Frequency | $2$ | $x$ | $2$ |
ધારોકે નીચેના વિતરણ નું મધ્યક $\mu$ અને પ્રમાણિત વિચલન $\sigma$ છે.
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
જ્યાં $\sum f_i=62$. જો $[x]$ એ મહત્તમ પૂર્ણાક $\leq x$ દર્શાવે,તો $\left[\mu^2+\sigma^2\right]=…….$