પ્રથમ $n $ પ્રાકૃતિક સંખ્યાઓના વિચરણનો ચલનાંક  શોધો.

  • A

    $\sqrt {\frac{{(n\, - \,1)}}{{3(n\, + \,1)}}} \,\, \times \,\,100$

  • B

    $\sqrt {\frac{{(n\, + \,1)}}{{2(n\, - \,1)}}} \,\, \times \,\,150$

  • C

    $\sqrt {\frac{{2{{(n\, - \,1)}^2}}}{{3(n\, + \,1)}}} \,\, \times \,\,100$

  • D

    આપેલ પૈકી એકપણ નહિં.

Similar Questions

$30$ વસ્તુઓને અવલોકવામાં આવે છે જેમાંથી $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} - d$, $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} $ અને બાકી રહેલ $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} + d$ છે જો આપેલ માહિતીનો  વિચરણ $\frac {4}{3}$  હોય તો $\left| d \right|$ = 

  • [JEE MAIN 2019]

સંખ્યાઓ $3,7, x$ અને $y(x>y)$ નો મધ્યક અને વિચરણ અનુક્રમે  $5$ અને $10$ છે. તો ચાર સંખ્યાઓ $3+2 \mathrm{x}, 7+2 \mathrm{y}, \mathrm{x}+\mathrm{y}$ અને $x-y$ નો મધ્યક મેળવો.

  • [JEE MAIN 2021]

નીચે આપેલ આવૃત્તિ-વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.

વર્ગ $30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $90-100$

આવૃત્તિ

$3$ $7$ $12$ $15$ $8$ $3$ $2$

$ \bar x , M$ અને  $\sigma^2$ એ $n$ અવલોકનો $x_1 , x_2,...,x_n$ અને $d_i\, = - x_i - a, i\, = 1, 2, .... , n$, જ્યાં $a$ એ કોઈ પણ સંખ્યા હોય તે  માટે અનુક્રમે મધ્યક બહુલક અને વિચરણ છે 
વિધાન $I$:  $d_1, d_2,.....d_n$ નો વિચરણ $\sigma^2$ થાય 
વિધાન $II$ : $d_1 , d_2, .... d_n$ નો મધ્યક અને બહુલક અનુક્રમે $-\bar x -a$ અને $- M - a$ છે

  • [JEE MAIN 2014]

જો વિતરણના વિચરણ અને પ્રમાણિત વિચલનનો સહગુણક અનુક્રમે $50\%$  અને $20\%$  હોય તો તેનો મધ્યક શું થાય ?