English
Hindi
13.Statistics
medium

પ્રથમ $20$ પ્રાકૃતિક સંખ્યાઓનું વિચરણ શોધો.

A

$\frac{{133}}{4}$

B

$\frac{{379}}{{12}}$

C

$\frac{{133}}{2}$

D

$\frac{{399}}{4}$

Solution

$\because \,\,\,{\sigma ^2}\, = \,\,\,\frac{{\Sigma x_i^2}}{n}\,\, – \,\,{\left( {\frac{{\Sigma {x_i}}}{n}} \right)^2}$

$ = \,\,\frac{1}{{20}}\,[{1^2}\, + \,\,{2^2}\, + \,\,……\,\, + \,\,{20^2}]\,\, – \,\,{\left[ {\frac{1}{{20}}(1\,\, + \,\,2\,\, + \,\,….\,\, + \,\,20)} \right]^2}$

$ = \,\,\frac{1}{{20}}\,\,\,\frac{{20\,\, \times \,\,21(2\,\, \times \,\,20\,\, + \,\,1)}}{6}\,\,\, – \,\,{\left[ {\frac{1}{{20}}\,\,\frac{{20\,\, \times \,\,21}}{2}} \right]^2}\,\,\,$

$\, = \,\,\frac{{7\,\, \times \,\,41}}{2}\,\, – \,\,\frac{{441}}{2}\,\,\,\,\, = \,\,\frac{{133}}{4}\,.$

હકીકત, માં પ્રથમ $n\, – $  પ્રાકૃતિક સંખ્યાઓનું  વિચરણ $ \frac{{{n^2}\, – \,\,1}}{{12}}$  થાય છે. 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.