ધારો કે વસ્તી $A $ એ $100 $ અવલોકનો $101, 102, ..... 200$ અને બીજી વસ્તી $B$ એ $100 $ અવલોકનો $151, 152, ...... 250 $ ધરાવે છે. જો $V_A $ અને $V_B$ એ અનુક્રમે બંને વસ્તીઓનું વિચરણ દર્શાવે તો $V_A / V_B$ શું થાય ?
$9/4$
$4/9$
$2/3$
$1$
નીચે આપેલ આવૃતિ વિતરણ માટે મધ્યક અને પ્રમાણિત વિચલન મેળવો
$\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|} \hline \text { Marks } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ \hline \text { Frequency } & 1 & 6 & 6 & 8 & 8 & 2 & 2 & 3 & 0 & 2 & 1 & 0 & 0 & 0 & 1 \\ \hline \end{array}$
$x $ ના $15$ અવલોકનોના પ્રયોગમાં $\Sigma$ $x^2 = 2830,$ $\Sigma$ $x = 170 $ આ પરિણામ મળે છે. એક અવલોકન $20$ ખોટું મળે છે અને તેના સ્થાને સાચું અવલોકન $30$ મૂકવામાં આવે તો સાચું વિરણ કેટલું થાય ?
$10$ વિદ્યાર્થીઓના ગુણના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $50$ અને $12$ જોવામાં આવેલ છે.ત્યાર બાદ એવુ જોવામાં આવ્યું કે બે ગુણ $20$ અને $25$ ને ખોટી રીતે અનુક્રમે $45$ અને $50$ વાંચવામાં આવ્યા હતા. તો સાચું વિચરણ $......$ છે.
આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.
વર્ગ | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
આવૃત્તિ | $5$ | $8$ | $15$ | $16$ | $6$ |
ધારોકે $12$ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $\frac{9}{2}$ અને $4$ છે પછી એવું જોવામાં આવ્યું કે બે અવલોકનો $7$ અને $14$ ને બદલે અનુક્રમે $9$ અને $10$ ગણતરીમાં લેવામાં આવ્યા હતા. જો સાચુ વિયરણ $\frac{m}{n}$ હોય, જ્યાં $m$ અને $n$ પરસ્પર અવિભાજ્ય છે,તો $m + n =.........$