ધારો કે અવલોકનો  $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ એ સમીકરણો  $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ અને  $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ નું સમાધાન કરે છે. જો  $\mu$ અને  $\lambda$ એ અનુક્રમે અવલોકનો $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ નો મધ્યક અને વિચરણ હોય તો ક્રમયુક્ત જોડ $(\mu, \lambda)$ મેળવો.

  • [JEE MAIN 2020]
  • A

    $(6, 6)$

  • B

    $(3, 6)$

  • C

    $(6, 3)$

  • D

    $(3, 3)$

Similar Questions

જો બે $20$ અવલોકનો ધરાવતા ગણો છે જેના પ્રમાણિત વિચલન સમાન અને $5$ છે તેમાંથી એક ગણનો મધ્યક $17$ અને બીજા ગણનો મધ્યક $22$ છે તો બંને ગણોના સમૂહનો પ્રમાણિત વિચલન મેળવો 

$a, a + d, a + 2d, ……, a + 2nd$  શ્રેણીનું વિચરણ શોધો.

આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :

$6,7,10,12,13,4,8,12$

$x_1, x_2 …… x_{101}$ વિતરણના $x_1 < x_2 < x_3 < …… < x_{100} < x_{101}$ મૂલ્યો માટે સંખ્યા $k$  ની સાપેક્ષે આ વિતરણનું સરેરાશ વિચલન ઓછામાં ઓછું હશે. જ્યારે $k$  બરાબર નીચેના પૈકી કયું હશે ?

ટૂંકી રીતનો ઉપયોગ કરીને મધ્યક અને પ્રમાણિત વિચલન શોધો.

${x_i}$ $60$ $61$ $62$ $63$ $64$ $65$ $66$ $67$ $68$
${f_i}$ $2$ $1$ $12$ $29$ $25$ $12$ $10$ $4$ $5$