ધારો કે અવલોકનો $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ એ સમીકરણો $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ અને $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ નું સમાધાન કરે છે. જો $\mu$ અને $\lambda$ એ અનુક્રમે અવલોકનો $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ નો મધ્યક અને વિચરણ હોય તો ક્રમયુક્ત જોડ $(\mu, \lambda)$ મેળવો.
$(6, 6)$
$(3, 6)$
$(6, 3)$
$(3, 3)$
જો પાંચ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $\frac{24}{5}$ અને $\frac{194}{25}$ હોય તથા પ્રથમ ચાર અવલોકનોનું મધ્યક $\frac{7}{2}$ હોય, તો પ્રથમ ચાર અવલોકનોનું વિચરણ......................થાય.
$30$ વસ્તુઓને અવલોકવામાં આવે છે જેમાંથી $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} - d$, $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} $ અને બાકી રહેલ $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} + d$ છે જો આપેલ માહિતીનો વિચરણ $\frac {4}{3}$ હોય તો $\left| d \right|$ =
એક $x$ પરના પ્રયોગના $15$ અવલોકન છે કે જેથી $\sum {x^2} = 2830$, $\sum x = 170$.જો આપેલ અવલોકનમાંથી અવલોકન $20$ ખોટુ છે અને તેના બદલામાં અવલોકન $30$ લેવામાં આવે છે તો નવી માહિતીનું વિચરણ મેળવો.
પ્રથમ $n$ પ્રાકૂર્તિક સંખ્યાનું વિચરણ $10$ છે અને પ્રથમ $m$ યુગ્મ પ્રાકૃતિક સંખ્યાનું વિચરણ $16$ હોય તો $m + n$ મેળવો.
જો માહિતી $x_1, x_2, ...., x_{10}$ એવી હોય કે જેથી પ્રથમ ચાર અવલોકનોનો મધ્યક $11$ અને બાકીના છ અવલોકનોનો મધ્યક $16$ તથા બધા અવલોકનોના વર્ગોનો સરવાળો $2,000$ થાય તો આ માહિતીનું પ્રમાણિત વિચલન મેળવો