પ્રથમ $n$ પ્રાકૂર્તિક સંખ્યાનું વિચરણ $10$ છે અને પ્રથમ $m$ યુગ્મ પ્રાકૃતિક સંખ્યાનું વિચરણ $16$ હોય તો $m + n$ મેળવો.
$16$
$18$
$24$
$22$
ધારોકે $S$ અને $a_1$ ના તમામ મૂલ્યોનો એવો ગણ છે કે જેના માટે $100$ ક્રમિક ધન પૂર્ણાંકો $a_1, a_2, a_3, \ldots, a_{100}$ નું મધ્યક સાપેક્ષ સરેરાશ વિચલન $25$ છે. તો $S$ એ $............$ છે.
આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.
વર્ગ | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
આવૃત્તિ | $5$ | $8$ | $15$ | $16$ | $6$ |
$30$ વસ્તુઓને અવલોકવામાં આવે છે જેમાંથી $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} - d$, $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} $ અને બાકી રહેલ $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} + d$ છે જો આપેલ માહિતીનો વિચરણ $\frac {4}{3}$ હોય તો $\left| d \right|$ =
અવલોકનો $^{10}C_0$ , $^{10}C_1$ , $^{10}C_2$ ,.... $^{10}C_{10}$ નો વિચરણ મેળવો.
સાત અવલોકનોના મધ્યક તથા વિચરણ અનુક્રમે $8$ અને $16$ છે. જો આમાંથી પાંચ અવલોકનો $2, 4, 10, 12, 14$ હોય, તો બાકીનાં બે અવલોકનો શોધો.