જ્યારે નળાકારની લંબાઈ વાર્નિયર કેલિપર્સથી માપવામાં આવી છે તેના અવલોકનો નીચે મુજબના છે. તો નળાકારની ખૂબ જ ચોકસાઈ યુક્ત લંબાઈ ........ $cm$ મળેે. $3.29\, cm, 3.28 \,cm,$ $ 3.29\, cm, 3.31\, cm,$ $ 3.28\, cm, 3.27 \,cm,$ $ 3.29 \,cm, 3.30 cm$
$2.19$
$2.98$
$3.29 $
$3.52$
ત્રુટિઓ માટે સરવાળા કે તફાવતના કારણે અંતિમ પરિણામમાં મળતી ત્રુટિ અંગેનો નિયમ લખો.
ભૌતિક રાશિ $X = \frac{{2{k^3}{l^2}}}{{m\sqrt n }}$ માં $k,\,l,\, m$ અને $n$ માં પ્રતિશત ત્રુટિ $1\%,2\%,3\%$ અને $4\%$ હોય,તો ભૌતિક રાશિ $X$ માં પ્રતિશત ત્રુટિ ......... $\%$ થાય.
ભૌતિક રાશિઓના અવલોકન (માપન)માં ઉદ્ભવતી ત્રુટિઓના પ્રકારો લખીને સમજાવો.
આપણે સાદા લોલકના દોલનના આવર્તકાળનું માપન કરીએ છીએ. જેમાં ક્રમિક અવલોકનોનાં માપ નીચે મુજબ મળે છે : $2.63 \;s , 2.56 \;s , 2.42\; s , 2.71 \;s$ અને $2.80 \;s$ તો અવલોકનોમાં ઉદ્ભવતી નિરપેક્ષ ત્રુટિ, સાપેક્ષ ત્રુટિ અને પ્રતિશત ત્રુટિની ગણતરી કરો.
એક ઘનની ઘનતાના માપનમાં દળ અને લંબાઈ અનુક્રમે $(10.00 \pm 0.10)\,\,kg\,$ અને $(0.10 \pm 0.01)\,\,m\,$ છે. તો તેની ઘનતાના માપનમાં કેટલી ત્રુટિ હશે?