- Home
- Standard 11
- Physics
3-1.Vectors
normal
જો સદિશ $\overrightarrow A = 2\hat i + 4\hat j - 5\hat k$ ,હોય તો દિક્કોશાઇન શોઘો.
A
$\frac{2}{{\sqrt {45} }},\frac{4}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{ - \,{\rm{5}}}}{{\sqrt {{\rm{45}}} }}$
B
$\frac{1}{{\sqrt {45} }},\frac{2}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{\rm{3}}}{{\sqrt {{\rm{45}}} }}$
C
$\frac{4}{{\sqrt {45} }},\,0\,{\rm{and}}\,\frac{{\rm{4}}}{{\sqrt {45} }}$
D
$\frac{3}{{\sqrt {45} }},\frac{2}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{\rm{5}}}{{\sqrt {{\rm{45}}} }}$
Solution
$|\overrightarrow A |\, = \sqrt {{{(2)}^2} + {{(4)}^2} + {{( – 5)}^2}} \, = \,\sqrt {45} $
$\cos \alpha = \frac{2}{{\sqrt {45} }},\,\,\,\,\,\cos \beta = \frac{4}{{\sqrt {45} }},\,\,\,\,\cos \gamma = \frac{{ – 5}}{{\sqrt {45} }}$
Standard 11
Physics