બિંદુ $\left( {a\,\,\sec \,\theta ,\,\,b\,\,\tan \,\,\theta } \right)$ આગળ અતિવલય $\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$ ના અભિલંબનું સમીકરણ મેળવો.
$\frac{{ax}}{{\sec \,\,\theta }}\,\, - \,\,\frac{{by}}{{\tan \,\,\theta }}\,\, = \,\,{a^2}\,\, - \,\,{b^2}$
$\frac{{ax}}{{\sec \,\,\theta }}\,\, + \,\,\frac{{by}}{{\tan \,\,\theta }}\,\, = \,\,{a^2}\,\, + \,\,{b^2}$
$\frac{{ax}}{{\sec \,\,\theta }}\,\, + \,\frac{{by}}{{\tan \,\,\theta }}\,\, = \,\,{a^2}\,\, - \,\,{b^2}$
$\frac{{ax}}{{\sec \,\,\theta }}\,\, - \,\,\frac{{by}}{{\tan \,\,\theta }}\,\, = \,\,a\,\, - \,b$
જો $\mathrm{e}_{1}$ અને $\mathrm{e}_{2}$ એ અનુક્રમે ઉપવલય $\frac{\mathrm{x}^{2}}{18}+\frac{\mathrm{y}^{2}}{4}=1$ અને અતિવલય $\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$ ની ઉકેન્દ્રીતા હોય અને બિંદુ $\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ એ ઉપવલય $15 \mathrm{x}^{2}+3 \mathrm{y}^{2}=\mathrm{k},$ પર હોય તો $\mathrm{k}$ મેળવો.
રેખાઓ $\sqrt 3 x\,\, - \,\,y\,\, - \,\,4\sqrt 3 \,\,k\,\, = \,\,0$ અને $\sqrt 3 \,\,kx\,\,+\,yk - \,\,4\sqrt 3 \,\, = \,\,0$ ના છેદ બિંદુનો બિંદુપથ ના ભિન્ન મૂલ્યો માટે શોધો.
જો અતિવલયનું કેન્દ્ર, શિરોબિંદુ અને નાભિકેન્દ્ર અનુક્રમે $ (0, 0), (4, 0)$ અને $ (6, 0) $ હોય, તો અતિવલયનું સમીકરણ.....
જો નાભિઓ વચ્ચેનું અંતર અતિવલયની$\frac{{{{\rm{x}}^{\rm{2}}}}}{{{{\rm{a}}^{\rm{2}}}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ની નિયામિકાઓ વચ્ચેનું અંતર $3 : 2$ ના ગુણોત્તરમાં હોય, તો $ a : b $ = ……
અતિવલય $H : x ^{2}-2 y ^{2}=4$ આપેલ છે. જો બિંદુ $P (4, \sqrt{6})$ આગળનો સ્પર્શક $x$ -અક્ષને બિંદુ $Q$ અને નાભીલંભને બિંદુ $R \left( x _{1}, y _{1}\right), x _{1}>0 $ આગળ છેદે છે. જો $F$ એ $H$ ની બિંદુ $P$ થી નજીકની નાભી હોય તો $\Delta QFR$ નું ક્ષેત્રફળ મેળવો.