ઉપવલયની નાભિઓ $(\pm 2, 0)$ છે અને તેની ઉત્કેન્દ્રિતા $ 1/2$ છે તેનું સમીકરણ શોધો.
$\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{2{y^2}}}{9}\,\, = \,\,1$
$\frac{{{x^2}}}{{12}}\,\, + \;\,\frac{{{y^2}}}{{10}}\,\, = \,\,1$
$\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{12}}\,\, = \,\,1$
$\frac{{3{x^2}}}{{12}}\,\, + \;\,\frac{{{y^2}}}{{14}}\,\, = \,\,1$
ઉપવલય કે જેની અક્ષો યામાક્ષોની અક્ષો હોય તથા જે બિંદુ $(-3,1) $ માંથી પસાર થાય અને ઉત્કેન્દ્રતા $\sqrt {\frac{2}{5}} $ હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
જો ઉપવલય $25 x^{2}+4 y^{2}=1$ પરના બિંદુ $(\alpha, \beta)$ માંથી પરવલય $y^{2}=4 x$ ને દોરેલ બે સ્પર્શકો એવા છે કે જેથી એક સ્પર્શકનો ઢાળ, બીજો સ્પર્શકના ઢાળ કરતાં ચાર ઘણો હોય, તો $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ નું મુલ્ય...................... છે.
જે ઉપવલયનું કેન્દ્ર $(2, -3)$ આગળ, નાભિકેન્દ્ર $(3, -3)$ આગળ અને એક શિરોબિંદુ $(4, -3)$ આગળ હોય તેવા ઉપવલયનું સમીકરણ શોધો.
ધારો કે $P$ એ $F_1$ અને $F_2$ નાભિઓ વાળા ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$પરનું ચલિત બિંદુ છે. જો ત્રિકોણ $PF_1F_2$ નું ક્ષેત્રફળ $A$ હોય તો $A$ નું મહત્તમ મુલ્ય :
અહી $\theta$ એ ઉપવલય $\frac{x^{2}}{9}+\frac{y^{2}}{1}=1$ અને વર્તુળ $x^{2}+y^{2}=3$ નાં પ્રથમ ચરણનાં છેદબિંદુ આગળનાં સ્પર્શકો વચ્ચેનો ખૂણો છે તો $\tan \theta$ ની કિમંત મેળવો.