English
Hindi
10-2. Parabola, Ellipse, Hyperbola
easy

ઉપવલયની નાભિઓ  $(\pm 2, 0)$  છે અને તેની ઉત્કેન્દ્રિતા $ 1/2$  છે તેનું સમીકરણ શોધો.

A

$\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{2{y^2}}}{9}\,\, = \,\,1$

B

$\frac{{{x^2}}}{{12}}\,\, + \;\,\frac{{{y^2}}}{{10}}\,\, = \,\,1$

C

$\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{12}}\,\, = \,\,1$

D

$\frac{{3{x^2}}}{{12}}\,\, + \;\,\frac{{{y^2}}}{{14}}\,\, = \,\,1$

Solution

ધરોકે ઉપવલયનું સમીકરણ 

 $\frac{{{x^2}}}{{{a^2}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1,$ છે ,

તો નાભીઓના  યામ $\left( { \pm \,\,ae,\,\,0} \right)$  થાય

$\therefore \,\,ae\,\, = \,\,2\,\, \Rightarrow \,\,a\,\, \times \,\,\frac{1}{2}\,\, = \,\,2\,\,\,\,\,\left[ {\,\,e\,\, = \,\,\frac{1}{2}} \right]\,\,\, \Rightarrow \,\,a\,\, = \,\,4$

આપણી પાસે ${b^2}\,\, = \,\,{a^2}\,\,{\left( {1\,\, – \,\,e} \right)^2}\,$

$\therefore \,\,{b^2}\,\, = \,\,16\,\,\left( {1\,\, – \,\,\frac{1}{4}} \right)\,\, = \,\,12$

તેથી ઉપવલય નું સમીકરણ 

 $ \frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{12}}\,\, = \,\,1\,\,$ થાય

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.