અહી ઉપવલય $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$ બિંદુ $\left(\sqrt{\frac{3}{2}}, 1\right)$ માંથી પસાર થાય છે અને ઉત્કેન્દ્રિતા $\frac{1}{\sqrt{3}} $ આપેલ છે . જો વર્તુળનું કેન્દ્ર એ ઉપવલય $E$ ની નાભી $\mathrm{F}(\alpha, 0), \alpha>0$ હોય અને ત્રિજ્યા $\frac{2}{\sqrt{3}}$ આપેલ છે . વર્તુળએ ઉપવલય $\mathrm{E}$ ને બે બિંદુઓ $\mathrm{P}$ અને $\mathrm{Q}$ માં છેદે છે તો $\mathrm{PQ}^{2}$ ની કિમંત મેળવો.
$\frac{8}{3}$
$\frac{4}{3}$
$3$
$\frac{16}{3}$
ઉપવલય $9x^2 + 5y^2 - 30y = 0 $ ની ઉત્કેન્દ્રતા ....
રેખા $y=x+1$ એ ઉપવલય $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ ને બે બિંદુઓ $P$ અને $Q$ માં મળે છે. જો $P Q$ વ્યાસવાળા વર્તુળની ત્રિજ્યા $r$ હોય, તો $(3 r)^{2}$ = ..............
ઉપવલય $\frac{{{x^2}}}{{27}} + {y^2} = 1$ પર બિંદુ $(3\sqrt 3 \cos \theta ,\;\sin \theta )$ કે જયાં $\theta \in (0,\;\pi /2)$ માંથી સ્પર્શક દોરવામાં આવે છે.તો $\theta $ ની . . . . કિંમત માટે સ્પર્શકે અક્ષો પર બનાવેલ અંત:ખંડનો સરવાળો ન્યૂનતમ થાય.
એક ગુપ્રમાં $100$ વ્યક્તિ છે કે જે પૈકી $75$ અંગ્રેજી બોલો છે અને $40$ હિન્દી બોલે છે. દરેક વ્યક્તિ બે પૈકી ઓછામાં ઓછી એક ભાષા બોલે છે. જો માત્ર અંગ્રેજી ભાષા બોલતા વ્યકિત $\alpha$ હોય અને માત્ર હિન્દી બોલતા વ્યક્તિ $\beta$ હોય તો ઉપવલય $25\left(\beta^2 x^2+\alpha^2 y^2\right)=\alpha^2 \beta^2$ ની ઉત્કેન્દૃતા $.......$ થાય.
જો ઉપવલય $\frac{ x ^{2}}{16}+\frac{ y ^{2}}{ b ^{2}}=1$ અને વર્તુળ $x ^{2}+ y ^{2}=4 b , b > 4$ નાં છેદબિંદુઓ વક્ર $y^{2}=3 x^{2}$ પર આવેલ હોય, તો $b=..... .$