જો સુરેખા $y\,\, = \,\,4x\,\, + \;\,c$ એ ઉપવલય $\frac{{{x^2}}}{8}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$ નો સ્પર્શક હોય, તો $c\,\, = \,...........$
$\pm 4$
$\pm 6$
$\pm 1$
$ \pm \,\,\sqrt {132} $
ઉપવલયની ઉકેન્દ્રિતા $\frac{1}{2}$ અને એક નાભિના યામ $P\left( {\frac{1}{2},\;1} \right)$ છે.જો બિંદુ $P$ ની નજીકની એક નિયામીકા એ વર્તૂળ ${x^2} + {y^2} = 1$ અને અતિવલય ${x^2} - {y^2} = 1$ નો સામાન્ય સ્પર્શક બને છે ,તો ઉપવલયનું પ્રમાણિત સમીકરણ મેળવો.
ધારો કે $S$ અને $S'$ નાભિઓ વાળા ઉપવલય $\frac{{{x^2}}}{{25}}\,\, + \;\,\frac{{{y^2}}}{{16}}\,\, = \,\,1$પરંતુ ચલ બિંદુ $P$ છે. જો ત્રિકોણ $PSS'$ નું ક્ષેત્રફળ $A$ નું મહત્તમ મૂલ્ય : ............. ચો. એકમ
જો ઉપવલયનો નાભિલંબ તેની ગૌણ અક્ષ કરતાં અડધો હોય, તો તેની ઉન્કેન્દ્રિતા ...
વર્તૂળ $(x - 1)^2 + y^2 = 1$ ના વ્યાસને ગૌણ અક્ષની અર્ધલંબાઈ તરીકે અને વર્તૂળ $x^2 + (y - 2)^2 = 4$ ના વ્યાસને પ્રધાન અક્ષની અર્ધ લંબાઈ તરીકે લઈને એક ઉપવલય દોર્યો. જો ઉપવલયનું કેન્દ્ર ઉગમબિંદુ આગળ હોય અને તેની અક્ષો યામાક્ષો હોય, તો ઉપવલયનું સમીકરણ મેળવો.
જો ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,\,$ ની નાભિઓ, અતિવલય $\frac{{{x^2}}}{{144}}\,\, - \,\,\frac{{{y^2}}}{{81}}\,\, = \,\,\frac{1}{{25}}$ ની નાભિઓને સમાન હોય,તો ${b^2}\, = \,\,...........$