બિંદુ $P(3, 4)$ માંથી ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$ પર દોરેલા સ્પર્શકો ઉપવલયને બિંદુઓ $A$ અને $B$ આગળ સ્પર્શક છે. જે બિંદુનું બિંદુ $P$ થી અને રેખા $AB$ થી અંતર સમાન હોય, તે બિંદુના બિંદુપથનું સમીકરણ.....

  • A

    $9x^2 + y^2 - 6xy - 54x - 62y + 241 = 0$

  • B

    $x^2 + 9y^2 + 6xy - 54x + 62y - 241 = 0$

  • C

    $9x^2 + 9y^2 - 6xy - 54x - 62y - 241 = 0$

  • D

    $x^2 + y^2 - 2xy + 27x + 32y - 120 = 0$

Similar Questions

આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ  પ્રધાન અક્ષની લંબાઈ $26$, નાભિઓ $(±5,\,0)$

આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ  પ્રધાન અક્ષ $x-$ અક્ષ પર હોય અને બિંદુઓ $(4, 3)$ અને $(6, 2)$ માંથી પસાર થાય

આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ  પ્રધાન અક્ષનાં અંત્યબિંદુઓ  $(0,\, \pm \sqrt{5})$, ગૌણ અક્ષનાં અંત્યબિંદુઓ $(±1,\,0)$

જો $P \equiv (x,\;y)$, ${F_1} \equiv (3,\;0)$, ${F_2} \equiv ( - 3,\;0)$ અને $16{x^2} + 25{y^2} = 400$, તો $ P{F_1} + P{F_2}$ = .. . .  .   

  • [IIT 1998]

ઉપવલય $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ પરનું બિંદુ $P$ એ દ્રીતીય ચરણમાં એવી રીતે આપેલ છે કે જેથી બિંદુ  $\mathrm{P}$  આગળનો ઉપવલયનો સ્પર્શક એ રેખા $x+2 y=0$ ને લંબ થાય છે. અહી $S$ અને $\mathrm{S}^{\prime}$ એ ઉપવલયની નાભીઓ છે અને $\mathrm{e}$ એ ઉત્કેન્દ્રિતા છે. જો $\mathrm{A}$ એ ત્રિકોણ $SPS'$ નું ક્ષેત્રફળ છે તો $\left(5-\mathrm{e}^{2}\right) . \mathrm{A}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]