આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ પ્રધાન અક્ષની લંબાઈ $26$, નાભિઓ $(±5,\,0)$
Length of major axis $=26 ;$ foci $=(\pm 5,\,0)$
since the foci are on the $x-$ axis, the major axis is along the $x-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semimajor axis.
Accordingly, $2 a=26 \Rightarrow a=13$ and $c=5$
It is known that $a^{2}=b^{2}+c^{2}$
$\therefore 13^{2}=b^{2}+5^{2}$
$\Rightarrow 169=b^{2}+25$
$\Rightarrow b^{2}=169-25$
$\Rightarrow b=\sqrt{144}=12$
Thus, the equation of the ellipse is $\frac{x^{2}}{13^{2}}+\frac{y^{2}}{12^{2}}=1$ or $\frac{x^{2}}{169}+\frac{y^{2}}{144}=1$
રેખા $L$ એ રેખાઓ $b x+10 y-8=0$ અને $2 x-3 y=0$, $b \in R -\left\{\frac{4}{3}\right\}$ ના છેદબિંદુ માંથી પસાર થાય છે . જો રેખા $L$ એ બિંદુ $(1,1)$ માંથી પસાર થાય છે અને વર્તુળ $17\left( x ^{2}+ y ^{2}\right)=16$ ને સ્પર્શે છે તો ઉપવલય $\frac{x^{2}}{5}+\frac{y^{2}}{b^{2}}=1$ ની ઉત્કેન્દ્રીતા મેળવો.
જો ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ના નાભિલંબના એક અંત્યબિંદુ આગળનો અભિલંબ એ પ્રધાન અક્ષના એક અંત્યબિંદુમાંથી પસાર થતો હોય, તો
બિંદુ $P$ એવી રીતે ખસે છે કે જેથી $(ae, 0)$ અને $(-ae, 0)$ બિંદુથી તેના અંતરનો સરવાળો હંમેશા $2a$ રહે છે. તો $P$ નો બિંદુપથ શોધો.(જ્યાં $0 < e < 1$).
જો ઉપવલયની ગૌણ અક્ષ (તેની અક્ષોને અનુક્રમે $x$ અને $y$ ની અક્ષ તરીકે લેતા) ના અંત્યબિંદુનું નાભિ અંતર $k$ હોય અને તેની નાભિઓ વચ્ચેનું અંતર $2h$ હોય તો તેનું સમીકરણ :
જો ઉપવલય $x^2 + 2y^2 = 2$ શિરોબિંદુઓ સિવાયના બધા બિંદુઓથી સ્પર્શક દોરવામાં આવે તો બધા સ્પર્શકોના મધ્યબિંદુનો બિંદુપથ ............. થાય