ઉપવલય $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ પરનું બિંદુ $P$ એ દ્રીતીય ચરણમાં એવી રીતે આપેલ છે કે જેથી બિંદુ  $\mathrm{P}$  આગળનો ઉપવલયનો સ્પર્શક એ રેખા $x+2 y=0$ ને લંબ થાય છે. અહી $S$ અને $\mathrm{S}^{\prime}$ એ ઉપવલયની નાભીઓ છે અને $\mathrm{e}$ એ ઉત્કેન્દ્રિતા છે. જો $\mathrm{A}$ એ ત્રિકોણ $SPS'$ નું ક્ષેત્રફળ છે તો $\left(5-\mathrm{e}^{2}\right) . \mathrm{A}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]
  • A

    $12$

  • B

    $6$

  • C

    $14$

  • D

    $24$

Similar Questions

એક ગુપ્રમાં $100$ વ્યક્તિ છે કે જે પૈકી $75$ અંગ્રેજી બોલો છે અને $40$ હિન્દી બોલે છે. દરેક વ્યક્તિ બે પૈકી ઓછામાં ઓછી એક ભાષા બોલે છે. જો માત્ર અંગ્રેજી ભાષા બોલતા વ્યકિત $\alpha$ હોય અને માત્ર હિન્દી બોલતા વ્યક્તિ $\beta$ હોય તો ઉપવલય  $25\left(\beta^2 x^2+\alpha^2 y^2\right)=\alpha^2 \beta^2$ ની ઉત્કેન્દૃતા  $.......$ થાય.

  • [JEE MAIN 2023]

બિંદુ $P\ (3, 4)$ માંથી ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$પર દોરેલા સ્પર્શકો ઉપવલયને બિંદુઓ $A$ અને $B$ આગળ સ્પર્શ છે.$A$ અને $B$ ના યામ મેળવો.

ઉપવલય $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ પરના કોઇ બિંદુથી દોરવામાં આવેલ સ્પર્શકે અક્ષો પર બનાવેલ ત્રિકોણનું ન્યૂનતમ ક્ષેત્રફળ  . . . .  થાય.   

  • [IIT 2005]

ઉપવલય $\mathrm{E}$ ની અક્ષોએ કાર્તેઝિય અક્ષોને સમાંતર છે અને કેન્દ્ર $(3,-4)$ અને એક નાભી $(4,-4)$ અને એક શિરોબિંદુ $(5,-4)$ આપેલ છે. જો $m x-y=4, m\,>\,0$ એ ઉપવલય  $\mathrm{E}$ નો એક સ્પર્શક હોય તો $5 \mathrm{~m}^{2}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

ઉપવલય $2x^2 + 5y^2 = 20$ ની જીવાનું સમીકરણ મેળવો કે જે બિંદુ $(2, 1)$ આગળ દ્વિભાજીત થાય..