જો નિયામિકાઓ વચ્ચેનું અંતર એ નાભિઓ વચ્ચેના અંતર કરતા ત્રણ ગણું હોય, તો ઉપવલયની ઉત્કેન્દ્રતા.....
$1/2$
$2/3$
$1/\sqrt 3 $
$4/5$
ધારોકે ઉપવલય $\frac{x^2}{36}+\frac{y^2}{4}=1$ પર ના બિંદુ $(3 \sqrt{3}, 1)$ પાસે ના સ્પર્શક અને અભિલંબ $x$-અક્ષને અનુક્રમે બિંદુ $A$ અને $B$ માં મળે છે. ધારોકે $AB$ ને વ્યાસ તરીકે લેતા વર્તુળ $C$ દોરી શકાય છે અને રેખા $x=2 \sqrt{5}$ એ $\alpha^2-\beta^2=........$
એક ગુપ્રમાં $100$ વ્યક્તિ છે કે જે પૈકી $75$ અંગ્રેજી બોલો છે અને $40$ હિન્દી બોલે છે. દરેક વ્યક્તિ બે પૈકી ઓછામાં ઓછી એક ભાષા બોલે છે. જો માત્ર અંગ્રેજી ભાષા બોલતા વ્યકિત $\alpha$ હોય અને માત્ર હિન્દી બોલતા વ્યક્તિ $\beta$ હોય તો ઉપવલય $25\left(\beta^2 x^2+\alpha^2 y^2\right)=\alpha^2 \beta^2$ ની ઉત્કેન્દૃતા $.......$ થાય.
જે વકો $\frac{x^{2}}{a}+\frac{y^{2}}{b}$ અને $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ એકબીજને $90^{\circ}$ નાં ખૂણે છેદતા હોય, તો નીચેનામાંથી કયો સંબંધ સત્ય છે ?
જેનું કેન્દ્ર ઉંગમબિંદુ હોય તથા અક્ષો યામાક્ષો પર હૉય અને બિંદુ $(4,-1)$ અને $(-2, 2)$ માંથી પસાર થતાં હોય તેવા ઉપવલયની ઉત્કેન્દ્રતા મેળવો.
ધારો કે $P$ એ $F_1$ અને $F_2$ નાભિઓ વાળા ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$પરનું ચલિત બિંદુ છે. જો ત્રિકોણ $PF_1F_2$ નું ક્ષેત્રફળ $A$ હોય તો $A$ નું મહત્તમ મુલ્ય :