જો $\frac{x}{a}\,\, + \;\,\frac{y}{b}\,\, = \,\,\sqrt 2 $ ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$ ને સ્પર્શે, તો તેનો ઉત્કેન્દ્રીકોણ (Eccentric Angle) $\,\theta \,\, = \,\, ............ $ $^o$
$0$
$90$
$45$
$60$
ધારો કે $A(\alpha, 0)$ અને $B(0, \beta)$ એ, રેખા $5 x+7 y=50$ પરના બિંદુઓ છે. ધારો કે બિંદુ $P$, રેખાખંડ $A B$ નું $7: 3$ ગુણોત્તરમાં અંતઃવિભાજન કરે છે. ધારો કે ઉપવલય $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ ની એક નિયામિકા $3 x-25=0$ છે અને અનુરૂપ નાભિ $S$ છે. જો $S$ માંથી $x$-અક્ષ પરનો લંબ $P$ માંથી પસાર થતો હોય, તો $E$ ના નાભિલંબની લંબાઇ .......................... છે.
$12$ મી લંબાઈનો સળિયો એવી રીતે ખસે છે કે જેથી તેના અંત્યબિંદુઓ યામાક્ષો પર રહે. $x-$ અક્ષ પરના અંત્યબિંદુથી $3$ મી દૂર આવેલ સળિયા પરના બિંદુ $P$ નો બિંદુગણ શોધો.
$\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,\left( {a\,\, < \,\,b} \right)$ ની બે નાભિઓ $S$ અને $S'$ હોય અને જો ઉપવલય અને ઉપવલય પરનું બિંદુ $P\ (x_1, y_1)$ હોય તો $SP + S'P = ……$
જે ઉપવલયનું નાભિકેન્દ્ર $(6, 7),$ નિયામિકા $x + y + 2 = 0$ અને $e\,\, = \,\,1/\sqrt 3 $ હોય, તેનું સમીકરણ :
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$36 x^{2}+4 y^{2}=144$