જો ઉપવલયની બે નાભિઓ વચ્ચેનું અંતર બરાબર તેની પ્રધાન અક્ષ હોય, તો ઉપવલયની ઉત્કેન્દ્રતા =

  • A

    $e\,\, = \,\,\frac{1}{{\sqrt 2 }}$

  • B

    $e\,\, = \,\,\frac{1}{{\sqrt 3 }}$

  • C

    $e\,\, = \,\,\frac{1}{{\sqrt 4 }}$

  • D

    $e\,\, = \,\,\frac{1}{{\sqrt 6 }}$

Similar Questions

ઉપવલય $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ પરનું બિંદુ $P$ એ દ્રીતીય ચરણમાં એવી રીતે આપેલ છે કે જેથી બિંદુ  $\mathrm{P}$  આગળનો ઉપવલયનો સ્પર્શક એ રેખા $x+2 y=0$ ને લંબ થાય છે. અહી $S$ અને $\mathrm{S}^{\prime}$ એ ઉપવલયની નાભીઓ છે અને $\mathrm{e}$ એ ઉત્કેન્દ્રિતા છે. જો $\mathrm{A}$ એ ત્રિકોણ $SPS'$ નું ક્ષેત્રફળ છે તો $\left(5-\mathrm{e}^{2}\right) . \mathrm{A}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

રેખા  $x = at^2 $ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ ને વાસ્તવિક બિંદઓમાં ક્યારે મળે ?

ધારોકે કેન્દ્ર $(1,0)$ અને નાભિલંબની લંબાઈ $\frac{1}{2}$ હોય તેવા ઊપવલયની પ્રધાન અક્ષ -અક્ષ પર છે જો તેની ગૌણ અક્ષ નાભિઓ પર $60^{\circ}$ ખૂણો આંતરે, તો તેની પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈઓના સરવાળાનો વર્ગ $......$ થાય.

  • [JEE MAIN 2023]

ધારો કે $E$ એ ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$અને $C$ એ વર્તૂળ $x^2 + y^2 = 9$ છે. $P$ અને $Q$ બરાબર અનુક્રમે બિંદુઓ $(1, 2)$ અને $(2, 1)$ લઈએ, તો

જો બિંદુઓ $A$ અને $B$ ના યામો અનુક્રમે $(\sqrt{7}, 0)$ અને $(-\sqrt{7}, 0)$ હોય અને વક્ર $9 x^{2}+16 y^{2}=144$ પરનું કોઈ બિંદુ $P$ આવેલ હોય તો $PA + PB$ ની કિમત શોધો 

  • [JEE MAIN 2020]