જેની ઉત્કેન્દ્રતા $e = \frac{1}{2}$ તથા એક નિયામિકા $x=4$ હોય તેવા ઊગમબિંદુ કેન્દ્ર હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
$4{x^2} + 3{y^2} = 1$
$3{x^2} + 4{y^2} = 12$
$4{x^2} + 3{y^2} = 12$
$3{x^2} + 4{y^2} = 1$
બિંદુ $(3, -2)$ આગળ ઉપવલય $4x^2 + 9y^2 = 36$ ના સ્પર્શકનું સમીકરણ શોધો.
ધારો કે $\frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$ એક ઉપવલય છે, જેની ઉત્કેન્દ્રતા $\frac{1}{\sqrt{2}}$ અને નાભિલંબની લંબાઈ $\sqrt{14}$ છે. તો $\frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ ની ઉત્કેન્દ્રતાનો વર્ગ__________ છે.
જો ઉપવલય $25 x^{2}+4 y^{2}=1$ પરના બિંદુ $(\alpha, \beta)$ માંથી પરવલય $y^{2}=4 x$ ને દોરેલ બે સ્પર્શકો એવા છે કે જેથી એક સ્પર્શકનો ઢાળ, બીજો સ્પર્શકના ઢાળ કરતાં ચાર ઘણો હોય, તો $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ નું મુલ્ય...................... છે.
ઉપવલય $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ ની નાભિલંબના અત્યબિંદુએ દોરવામાં આવેલ સ્પર્શક દ્વારા બનતા ચતુષ્કોણનું ક્ષેત્રફળ ............... $\mathrm{sq. \, units}$ મેળવો.
ધારો કે ઉપવલય $\frac{x^2}{9}+\frac{y^2}{4}=1$ પરનું એક બિંદુ $P$ છે. ધારો કે બિંદુ $P$ માંથી પસાર થતી અને $y$-અક્ષને સમાંતર રેખા, વર્તુળ $x^2+y^2=9$ ને બિંદુ $\mathrm{Q}$ માં એવી રીતે મળે છે કે જેથી $\mathrm{P}$ અને $\mathrm{Q}, x$-અક્ષની એકન બાજુએ આવે છે. તો $\mathrm{P}$ ઉપવલય પર ગતિ કરે ત્યારે $\mathrm{PQ}$ પરના, $\mathrm{PR}: \mathrm{RQ}=4: 3$ થાય તેવા બિંદુ $\mathrm{R}$ ના બિંદુપથની ઉત્કેન્દ્રતા........................ છે .