10-2. Parabola, Ellipse, Hyperbola
easy

જેની ઉત્કેન્દ્રતા $e = \frac{1}{2}$ તથા એક નિયામિકા $x=4$ હોય તેવા ઊગમબિંદુ કેન્દ્ર હોય તેવા ઉપવલયનું સમીકરણ મેળવો.

A

$4{x^2} + 3{y^2} = 1$

B

$3{x^2} + 4{y^2} = 12$

C

$4{x^2} + 3{y^2} = 12$

D

$3{x^2} + 4{y^2} = 1$

(AIEEE-2004)

Solution

(b) Since directrix is parallel to $y$ – axis,

hence axes of the ellipse are parallel to $x$ – axis.

Let the equation of the ellipse be $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, $(a > b)$

${e^2} = 1 – \frac{{{b^2}}}{{{a^2}}}$

$\Rightarrow \frac{{{b^2}}}{{{a^2}}} = 1 – {e^2} = 1 – \frac{1}{4}$

$\Rightarrow \frac{{{b^2}}}{{{a^2}}} = \frac{3}{4}$.

Also, one of the directrices is $x = 4$

$ \Rightarrow $$\frac{a}{e} = 4$

$\Rightarrow a = 4e = 4.\frac{1}{2} = 2$;

${b^2} = \frac{3}{4}{a^2} = \frac{3}{4}.4 = 3$

$\therefore $ Required ellipse is $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{3} = 1$

or $3{x^2} + 4{y^2} = 12$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.