ધારોકે $P \left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), Q , R$ અને $S$ એ ઉપવલય $9 x^2+4 y^2=36$ પરના ચાર બિંદુઓ છે.ધારોકે $PQ$ અને $RS$ પરસ્પર લંબ છે તથા ઉગમબિંદુમાંથી પસાર થાય છે.જો $\frac{1}{(P Q)^2}+\frac{1}{(R S)^2}=\frac{p}{q}$,જ્યાં $p$ અને $q$ પરસ્પર અવિભાજ્ય છે, તો $p+q=.........$

  • [JEE MAIN 2023]
  • A

    $143$

  • B

    $137$

  • C

    $157$

  • D

    $147$

Similar Questions

ધારોકે રેખા $2 x+3 y-\mathrm{k}=0, \mathrm{k}>0$ એ $x$-અક્ષ અને $y$-અક્ષ ને અનુક્રમે બિંદુઓ $A$ અને $B$ માં છેદે છે. જો રેખા ખંડ $A B$ ને વ્યાસ તરીકે લેતા બનતા વર્તુળ સમીકરણ $x^2+y^2-3 x-2 y=0$ હોય અને ઉપવલય $x^2+9 y^2=\mathrm{k}^2$ ના નાભિલંબ ની લંબાઈ $\frac{\mathrm{m}}{\mathrm{n}}$ હોય, જ્યાં $m$ અને $n$ પરસ્પર અવિભાજય છે, તો $2 m+n=$ ...........

  • [JEE MAIN 2024]

જો ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,\,$ ની નાભિઓ,  અતિવલય $\frac{{{x^2}}}{{144}}\,\, - \,\,\frac{{{y^2}}}{{81}}\,\, = \,\,\frac{1}{{25}}$ ની નાભિઓને સમાન હોય,તો ${b^2}\, = \,\,...........$

$\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,\left( {a\,\, < \,\,b} \right)$ ની બે નાભિઓ $S$ અને $S'$ હોય અને જો ઉપવલય અને ઉપવલય પરનું બિંદુ $P\ (x_1, y_1)$ હોય તો $SP + S'P = ……$

ઉપવલય  $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ પર બે બિંદુઓ  ${\theta _1}\,$ અને ${\theta _2}$  ની જીવા . .  .  બિંદુ આગળ કાટખૂણે  બનાવે છે. (જો ${\text{tan}}\,\,{\theta _{\text{1}}}\,\tan {\theta _2}\,\, = \,\, - \frac{{{a^2}}}{{{b^2}}}$  )

ઉપવલય $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1$, a $>2$, ની અંતર્ગત, જેનું એક શિરોબિંદુ આ ઉપવલયની મુખ્ય અક્ષનું એક અંત્ય બિંદુ હોય અને જેની એક બાજુ $y$-અક્ષને સમાંતર હોય તેવા ત્રિકોણનું મહત્તમ ક્ષેત્રફળ $6 \sqrt{3}$ છે. તો આ ઉપવલયની ઉત્કેન્દ્રતા ....... છે,

  • [JEE MAIN 2022]