રેખાઓ $y = mx, y = mx + 1, y = nx, y = nx + 1$ દ્વારા બનતા સમાંતર બાજુ ચતુષ્કોણનું ક્ષેત્રફળ....
$|m+n| / (m - n)^2$
$2 / |m + n|$
$1/ |m + n|$
$1 / |m - n|$
ઊંગમબિંદુ અને બિંદુઓ કે જ્યાં રેખા $L_1$ એ $x$ અક્ષ અને $y$ અક્ષને છેદે કે જેથી કાટકોણ ત્રિકોણ $T$ બનાવે કે જેથી તેનું ક્ષેત્રફળ $8$ છે તથા રેખા $L_1$ એ રેખા $L_2$ : $4x -y = 3$, ને લંબ હોય તો ત્રિકોણ $T$ ની પરીમીતી મેળવો
જો ત્રિકોણનું પરિકેન્દ્ર ઉંગમબિંદુ પર આવેલ હોય અને તેનું મધ્યકેન્દ્ર બિંદુ $(a^2 + 1 , a^2 + 1 )$ અને $(2a, - 2a)$ જોડતા રેખાખંડના મધ્યબિંદુ પર આવેલ હોય જ્યાં $a \ne 0$, તો કોઈ પણ $a$ ની કિમત માટે ત્રિકોણનું મધ્યકેન્દ્ર ક્યાં આવેલ હોય?
રેખા $2x + y = 5$ જેની એક બાજુ હોય તેવા સમદ્રીબાજુ ત્રિકોણની ઊંગમબિંદુમાંથી પસાર થતાં અને પરસ્પર લંબ સુરેખ રેખાઓ હોય તો ત્રિકોણનું ક્ષેત્રફળ મેળવો
રેખાઓ $x \cos \theta+y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$ ના યામાક્ષો વચ્યેની રેખાખંડોના મધ્યબિંદુઓ દ્વારા આલેખાયેલ વક્ર પર બિંદુ $\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$ આવેલ હોય, તો $\alpha=.........$
ચષ્તુકોણના શિરોબિંદુઓ $(2, -1), (0, 2), (2, 3)$ અને $(4, 0)$ હોય તો તેના વિકર્ણો વચ્ચેનો ખૂણો મેળવો.