- Home
- Standard 11
- Mathematics
અહી ત્રિકોણ કે જેના શિરોબિંદુ $A ( a , 3), B ( b , 5)$ અને $C ( a , b ), ab >0$ હોય તેનું પરિકેન્દ્ર $P (1,1)$ છે. જો રેખા $AP$ એ રેખા $BC$ ને બિંદુ $Q \left( k _{1}, k _{2}\right)$ માં છેદે છે તો $k _{1}+ k _{2}$ ની કિમંત મેળવો.
$2$
$\frac{4}{7}$
$\frac{2}{7}$
$4$
Solution
$m _{ AC } \longrightarrow \infty$
$m _{ PD }=0$
$D \left(\frac{ a + a }{2}, \frac{ b +3}{2}\right)$
$D \left( a , \frac{ b +3}{2}\right)$
$m _{ PD }=0$
$\frac{ b +3}{2}-1=0$
$b +3-2=0$
$b =-1$
$E \left(\frac{ b + a }{2}, \frac{5+ b }{2}\right)=\left(\frac{ af }{2}, 2\right)$
$m_{C B} \cdot m_{E P}=-1$
$\left(\frac{5-b}{b-a}\right)=\left(\frac{2-1}{\frac{a-1}{2}-1}\right)=-1$
$\left(\frac{6}{-1-a}\right)=\left(\frac{2}{a-3}\right)=-1$
$12=(1+a)(a-3)$
$12=a^{2}-3 a+a-3$
$a^{2}-2 a-15=0$
$(a-5)(a+3)=0$
$a=5$ or $a=-3$
Given $a b > 0$
$a (-1) > 0$
$- a > 0$
$a < 0$
$a=-3$ Accept
AP line $A (-3,3) P (1,1)$
$y-1=\left(\frac{3-1}{-3-1}\right)(x-1)$
$-2 y+2=x-1$
$x+2 y=3 \quad$ Appling $\ldots . .(1)$
Line $BC B(-1,5)$
$C (-3,-1)$
$( y -5)=\frac{6}{2}( x +1)$
$y-5=3 x+3$
$y=3 x+8$
Solving (1) \& (2)
$x+2(3 x+8)=3$
$7 x+16=3$
$7 x=-13$
$x=-\frac{13}{7}$
$y=3\left(-\frac{13}{7}\right)+8$
$=\frac{-39+56}{7}$
$y=\frac{17}{7}$
$x+y=\frac{-13+17}{7}=\frac{4}{7}$