જો $a > 2b > 0$ તો $m$ ની . . . ધન કિંમત માટે રેખા $y = mx - b\sqrt {1 + {m^2}} $ એ વર્તૂળો ${x^2} + {y^2} = {b^2}$ અને ${(x - a)^2} + {y^2} = {b^2}$ નો સામાન્ય સ્પર્શક બને.
$\frac{{2b}}{{\sqrt {{a^2} - 4{b^2}} }}$
$\frac{{\sqrt {{a^2} - 4{b^2}} }}{{2b}}$
$\frac{{2b}}{{a - 2b}}$
$\frac{b}{{a - 2b}}$
ધારો કે રેખાઓ $y+2 x=\sqrt{11}+7 \sqrt{7}$ અને $2 y + x =2 \sqrt{11}+6 \sqrt{7}$ એ વર્તુળ $C:(x-h)^{2}+(y-k)^{2}=r^{2}$. ના અભિલંબ છે જો રેખા $\sqrt{11} y -3 x =\frac{5 \sqrt{77}}{3}+11$ એ વર્તુળ $C$, નો સ્પર્શક હોય તો $(5 h-8 k)^{2}+5 r^{2}$ નું મૂલ્ય ...................છે
રેખા $x + 2y = 1$ એ યામાક્ષોને બિંદુ $A$ અને $B$ આગળ છેદે છે જો વર્તુળ બિંદુ $A, B$ અને ઉંગમબિંદુમાંથી પસાર થતું હોય તો બિંદુ $A$ અને $B$ થી વર્તુળના ઉંગમબિંદુ એ અંતરેલા સ્પર્શકના લંબઅંતરનો સરવાળો મેળવો.
$\lambda$ ના કયા મુલ્ય માટે રેખા $3x - 4y = \lambda$ એ વર્તૂળ $x^2 + y^2 - 4x - 8y - 5 = 0$, ને સ્પર્શેં ?
જો વર્તૂળ $S = x^2 + y^2 + 2gx + 2fy + c = 0$ દ્વારા બિંદુ $P(x_1, y_1) $ આગળ બનતો ખૂણો $\theta$ હોય, તો....
રેખા $2 x - y +1=0$ એ બિંદુ $(2,5)$ આગળ વર્તુળનો સ્પર્શક બને છે કે જેનું કેન્દ્ર રેખા $x-2 y=4$ પર આવેલ હોય તો વર્તુળની ત્રિજ્યા મેળવો.