10-1.Circle and System of Circles
hard

ધારો કે રેખાઓ $y+2 x=\sqrt{11}+7 \sqrt{7}$ અને $2 y + x =2 \sqrt{11}+6 \sqrt{7}$ એ વર્તુળ $C:(x-h)^{2}+(y-k)^{2}=r^{2}$. ના અભિલંબ છે જો રેખા  $\sqrt{11} y -3 x =\frac{5 \sqrt{77}}{3}+11$ એ વર્તુળ  $C$, નો સ્પર્શક હોય તો  $(5 h-8 k)^{2}+5 r^{2}$ નું મૂલ્ય ...................છે 

A

$916$

B

$816$

C

$856$

D

$86$

(JEE MAIN-2022)

Solution

Normal are

$y +2 x =\sqrt{11}+7 \sqrt{7}$

$2 y + x =2 \sqrt{11}+6 \sqrt{7}$

Center of the circle is point of intersection of ormals i.e.

$\left(\frac{8 \sqrt{7}}{3}, \sqrt{11}+\frac{5 \sqrt{7}}{3}\right)$

Tangent is $\sqrt{11} y-3 x=\frac{5 \sqrt{77}}{3}+11$

Radius will be $\perp$ distance of tangent from center

i.e. $4 \sqrt{\frac{7}{5}}$

Now $(5 h -8 k )^{2}+5 r ^{2}=816$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.