જો વર્તૂળ $x^{2} + y^{2} = 10x$ ની જીવા $y = 2x $ હોય, તો જે વર્તૂળનો વ્યાસ આ જીવા હોય તે વર્તૂળનું સમીકરણ.....
$x^{2} + y^{2} + 2x + 4y = 0$
$x^{2}+ y^{2}+ 2x - 4y = 0$
$x^{2} + y^{2} - 2x - 4y = 0$
એકપણ નહિ
બે સમાન ત્રિજ્યા ધરાવતા વર્તુળો બિંદુ $(0, 1)$ અને $(0, -1)$ માં છેદે છે બિંદુ $(0, 1)$ આગળ એક વર્તુળનો સ્પર્શક આંતરવામાં આવે તો તે બીજા વર્તુળના કેન્દ્ર માંથી પસાર થી તો બંને વર્તુળના કેન્દ્ર વચ્ચેનું અંતર મેળવો.
બિંદુ $(a, b)$ માંથી પસાર થતા તથા વર્તૂળ ${x^2} + {y^2} = {p^2}$ ને લંબચ્છેદી હોય તેવા વર્તૂળના કેન્દ્રનો બિંદુગણનું સમીકરણ મેળવો.
$x^2 + y^2 - 4x - 6y - 21 = 0$ અને $3x + 4y + 5 = 0$ ના છેદબિંદુમાંથી અને બિંદુ $(1, 2)$ માંથી પસાર થતા વર્તૂળનું સમીકરણ :
જો એક વર્તૂળ, રેખાઓ $\lambda x - y + 1 = 0$ અને $x - 2y + 3 = 0$ ના યામ અક્ષો સાથેના છેદબિંદુમાંથી પસાર થાય, તો $\lambda$ નું મુલ્ય :
વર્તૂળો ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ અને ${x^2} + {y^2} - 8x + 2y + 8 = 0$ બે ભિન્ન બિંદુમાં છેદે તો,