વર્તુળો $x^2+y^2-18 x-15 y+131=0$ અને $x^2+y^2-6 x-6 y-7=0$ ના સામાન્ય સ્પર્શકોની સંખ્યા $.........$ છે.
$3$
$2$
$1$
$4$
$k$ ના કયા મુલ્ય માટે વર્તૂળો $x^2 + y^2 + 5x + 3y + 7 = 0$ અને $x^2 + y^2 - 8x + 6y + k = 0$ એકબીજાને લંબ છેદે ?
જો એક વર્તૂળ, રેખાઓ $\lambda x - y + 1 = 0$ અને $x - 2y + 3 = 0$ ના યામ અક્ષો સાથેના છેદબિંદુમાંથી પસાર થાય, તો $\lambda$ નું મુલ્ય :
વર્તૂળો ${x^2} + {y^2} + 13x - 3y = 0$ અને $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ ના છેદબિંદુ અને બિંદુ $(1, 1)$ માંથી પસાર થતા વર્તૂળનું સમીકરણ મેળવો
બે વર્તૂળો $x^2 + y^2 - 2x - 2y = 0$ અને $x^2 + y^2= 4$ નો છેદકોણ ............. $^o$ માં મેળવો.
વર્તુળો પરના બિંદુઓ $P _{1}$ અને $P _{2}$ વચ્ચેનું ન્યૂનતમ અંતર મેળવો કે જેમાં એક બિંદુ$P _{1}$ એક વર્તુળ પર અને બીજું બિંદુ $P _{2}$ એ બીજા વર્તુળ પર વર્તુળ પર આવેલ છે. જ્યાં વર્તુળોના સમીકરણો $x^{2}+y^{2}-10 x-10 y+41=0$ ; $x^{2}+y^{2}-24 x-10 y+160=0$ છે.