ઉગમબિંદુમાંથી પસાર થતું, રેખા $x + y = 4$ પર કેન્દ્ર ધરાવતું અને વર્તૂળ $x^2 + y^2 - 4x + 2y + 4 = 0$ ને લંબરૂપે છેદતા વર્તૂળનું સમીકરણ .....

  • A

    $x^2 + y^2 - 2x - 4y = 0$

  • B

    $x^2 + y^2 - 6x - 2y = 0$

  • C

    $x^2 + y^2 - 4x - 4y = 0$

  • D

    $x^2 + y^2 - 8x = 0$

Similar Questions

બે સમાન ત્રિજ્યા ધરાવતા વર્તુળો બિંદુ $(0, 1)$ અને $(0, -1)$ માં છેદે છે બિંદુ $(0, 1)$ આગળ એક વર્તુળનો સ્પર્શક આંતરવામાં આવે તો તે બીજા વર્તુળના કેન્દ્ર માંથી પસાર થી તો બંને વર્તુળના કેન્દ્ર વચ્ચેનું અંતર મેળવો. 

  • [JEE MAIN 2019]

વર્તૂળો $x^2 + y^2 - 8x - 2y + 1 = 0$ અને $x^2 + y^2 + 6x + y = 0$ ના સામાન્ય સ્પર્શકોની સંખ્યા :

વર્તૂળ $x^2 + y^2 + 2gx + 2fy + \alpha = 0$ પરના કોઈપણ બિંદુ પરથી વર્તૂળ $x^2 + y^2 + 2gx + 2fy + \beta = 0$ પર દોરેલ સ્પર્શકની લંબાઈ :

વર્તુળો $x^2 +y^2 - 8x - 2y + 1 = 0$ અને $x^2 + y^2 + 6x + 8y = 0$ ને સામાન્ય સ્પર્શકોની સંખ્યા મેળવો. 

  • [AIEEE 2012]

જો $A=\left\{(x, y) \in R \times R \mid 2 x^{2}+2 y^{2}-2 x-2 y=1\right\}$ ; $B=\left\{(x, y) \in R \times R \mid 4 x^{2}+4 y^{2}-16 y+7=0\right\}$ અને $C=\left\{(x, y) \in R \times R \mid x^{2}+y^{2}-4 x-2 y+5 \leq r^{2}\right\}$ હોય તો $|r|$ ની ન્યૂનતમ કિમંત મેળવો કે જેથી $A \cup B \subseteq C$ થાય.

  • [JEE MAIN 2021]