ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ પર બે બિંદુઓ ${\theta _1}\,$ અને ${\theta _2}$ ની જીવા . . . બિંદુ આગળ કાટખૂણે બનાવે છે. (જો ${\text{tan}}\,\,{\theta _{\text{1}}}\,\tan {\theta _2}\,\, = \,\, - \frac{{{a^2}}}{{{b^2}}}$ )
નાભિકેન્દ્ર
કેન્દ્ર
પ્રધાન અક્ષના અંત્યબિંદુ
ગૌણ અક્ષના અંત્યબિંદુ
સમીકરણ $ \frac{{{x^2}}}{{10\,\, - \,\,a}}\,\, + \,\,\frac{{{y^2}}}{{4\,\, - \,\,a}}\,\, = \,\,1\,$ એ ઉપવલય છે તેમ ક્યારે દર્શાવે:
જો ઉપવલયની ગૌણ અક્ષ (તેની અક્ષોને અનુક્રમે $x$ અને $y$ ની અક્ષ તરીકે લેતા) ના અંત્યબિંદુનું નાભિ અંતર $k$ હોય અને તેની નાભિઓ વચ્ચેનું અંતર $2h$ હોય તો તેનું સમીકરણ :
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ શિરોબિંદુઓ $(0,\,\pm 13),$ નાભિઓ $(0,\,±5)$
બિંદુ $ (1, 2)$ માંથી ઉપવલય $ 3x^2 + 2y^2 = 5$ પર દોરાતા સ્પર્શકોની જોડ વચ્ચેનો ખૂણો.....