ઉપવલય $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1$, a $>2$, ની અંતર્ગત, જેનું એક શિરોબિંદુ આ ઉપવલયની મુખ્ય અક્ષનું એક અંત્ય બિંદુ હોય અને જેની એક બાજુ $y$-અક્ષને સમાંતર હોય તેવા ત્રિકોણનું મહત્તમ ક્ષેત્રફળ $6 \sqrt{3}$ છે. તો આ ઉપવલયની ઉત્કેન્દ્રતા ....... છે,
$\frac{\sqrt{3}}{2}$
$\frac{1}{2}$
$\frac{1}{\sqrt{2}}$
$\frac{\sqrt{3}}{4}$
જો ઉપવલય $x^{2}+4 y^{2}+2 x+8 y-\lambda=0$ નાં નાભિલંબ લંબાઈ $4$ હોય અને તેની મુખ્ય અક્ષની લંબાઈ $l$ હોય, તો $\lambda+l=$ .........
ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{3} = 1$ ના બિંદુ $\left( {2,\frac{3}{2}} \right)$ આગળનો અભિલંબ પરવલયને સ્પર્શે છે તો પરવલયનું સમીકરણ ..... થાય
એક ગુપ્રમાં $100$ વ્યક્તિ છે કે જે પૈકી $75$ અંગ્રેજી બોલો છે અને $40$ હિન્દી બોલે છે. દરેક વ્યક્તિ બે પૈકી ઓછામાં ઓછી એક ભાષા બોલે છે. જો માત્ર અંગ્રેજી ભાષા બોલતા વ્યકિત $\alpha$ હોય અને માત્ર હિન્દી બોલતા વ્યક્તિ $\beta$ હોય તો ઉપવલય $25\left(\beta^2 x^2+\alpha^2 y^2\right)=\alpha^2 \beta^2$ ની ઉત્કેન્દૃતા $.......$ થાય.
ઉપવલય $4x^2 + 9y^2 = 1$ ઉપર કયા બિંદુ આગળના સ્પર્શકો $8x = 9y$ ને સમાંતર હોય ?
જો ઉપવલય $\frac{{{x^2}}}{{27}} + \frac{{{y^2}}}{3} = 1$ પરના બિંદુએથી બનાવેલ સ્પર્શક યામાક્ષોને બિંદુ $A$ અને $B$ માં છેદે તથા $O$ એ ઉંગમબિંદુ હોય તો ત્રિકોણ $OAB$ નું ન્યૂનતમ ક્ષેત્રફળ ચો. એકમ માં મેળવો.