10-1.Circle and System of Circles
hard

વર્તૂળો ${x^2} + {y^2} = 4$ અને ${x^2} + {y^2} - 6x - 8y = 24$ ના સામાન્ય સ્પર્શકોની સંખ્યા મેળવો.

A

$0$

B

$1$

C

$3$

D

$4$

(IIT-1998)

Solution

(b) Circles ${S_1} \equiv {x^2} + {y^2} = {2^2}$,

${S_2} \equiv {(x – 3)^2} + {(y – 4)^2} = {7^2}$

$\therefore $ Centres ${C_1} = (0,\;0),$ ${C_2} = (3,\,4)$

and radii ${r_1} = 2,\;{r_2} = 7$

$\therefore \;{C_1}{C_2} = 5,$  ${r_2} – {r_1} = 5$

$i.e$., circles touch internally.

Hence there is only one common tangent.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.