વર્તૂળ $x^2 + y^2 = 1 $ સાથે સંકળાયેલ અને અંદરથી સ્પર્શતા $(4, 3)$ કેન્દ્રવાળા વર્તૂળનું સમીકરણ....
$x^2 + y^2 + 8x - 6y + 9 = 0$
$x^2 + y^2 - 8x + 6y + 9 = 0$
$x^2 + y^2 + 8x - 6y 11 = 0$
$x^2 + y^2 - 8x + 6y - 11 = 0$
વર્તુળ $\mathrm{C}$ એ રેખા $\mathrm{x}=2 \mathrm{y}$ ને બિંદુ $(2,1)$ આગળ સ્પર્શે છે અને વર્તુળ $C_{1}: x^{2}+y^{2}+2 y-5=0$ ને બે બિંદુઓ $\mathrm{P}$ અને $\mathrm{Q}$ એવી રીતે છેદે છે કે જેથી $\mathrm{PQ}$ એ વર્તુળ $\mathrm{C}_{1}$ નો વ્યાસ થાય છે તો વ્યાસ $\mathrm{C}$ મેળવો.
વર્તૂળ અને તેની જીવાનું સમીકરણ અનુક્રમે $x^2 + y^2 = a^2$ અને $x\ cos\ \alpha + y\ sin\ \alpha = p$ છે. આ જીવા જે વર્તૂળનો વ્યાસ હોય તે વર્તૂળનું સમીકરણ :
ત્રિકોણની ત્રણ બાજુઓને વ્યાસ તરીકે લઈ દોરેલા ત્રણ વર્તૂળોનું મૂલાક્ષ કેન્દ્ર (રેડિકલ કેન્દ્ર) . .. .
વિધાન $(A) :$ જો બે વર્તૂળો $ x^2 + y^2 + 2gx + 2fy = 0 $ અને $ x^2 + y^2 + 2gx + 2fy = 0 $ એકબીજાને સ્પર્શેં, તો $f'g = fg'$
કારણ $(R) :$ જો તેમના કેન્દ્રોને જોડતી રેખા બધા જ શક્ય સામાન્ય સ્પર્શકોને લંબ હોય, તો બે વર્તૂળો એકબીજાને સ્પર્શેં.
બિંદુ $C_1$ અને $C_2$ એ અનુક્રમે વર્તુળ $x^2 + y^2 -2x -2y -2 = 0$ અને $x^2 + y^2 - 6x-6y + 14 = 0$ ના કેન્દ્રો છે જો બિંદુ $P$ અને $Q$ એ વર્તુળોના છેદબિંદુઓ હોય તો ચતુષ્કોણ $PC_1QC_2$ ક્ષેત્રફળ (ચો. એકમમાં ) .................. થાય