ધારો કે $P$ એ $F_1$ અને $F_2$ નાભિઓ વાળા ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$પરનું ચલિત બિંદુ છે. જો ત્રિકોણ $PF_1F_2$ નું ક્ષેત્રફળ $A$ હોય તો $A$ નું મહત્તમ મુલ્ય :
$2\ abe$
$abe$
$\frac{1}{2}\ abe$
એકપણ નહિ
$12$ મી લંબાઈનો સળિયો એવી રીતે ખસે છે કે જેથી તેના અંત્યબિંદુઓ યામાક્ષો પર રહે. $x-$ અક્ષ પરના અંત્યબિંદુથી $3$ મી દૂર આવેલ સળિયા પરના બિંદુ $P$ નો બિંદુગણ શોધો.
ઉપવલય $4x^2 + 9y^2 = 36$ પરના ક્યાં બિંદુ આગળ આંતરેલ અભિલંબ રેખા $4x -2y-5 = 0$ ને સમાંતર થાય ?
જો રેખા $x -2y = 12$ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ ના બિંદુ $\left( {3,\frac{-9}{2}} \right)$ આગળનો સ્પર્શક હોય તો ઉપવલયના નાભીલંબની લંબાઈ =
કોઈ $\theta \in\left(0, \frac{\pi}{2}\right)$ માટે, જો અતિવલય $x^{2}-y^{2} \sec ^{2} \theta=10$ ની ઉત્કેન્દ્ર્તા એ ઉપવલય $x^{2} \sec ^{2} \theta+y^{2}=5$ ની ઉત્કેન્દ્રતા કરતાં $\sqrt{5}$ ગણી હોય તો ઉપવલયની નાભીલંબની લંબાઇ શોધો.