આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$
The given equation is $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$ or $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{10^{2}}=1$
Here, the denominator of $\frac{y^{2}}{100}$ is greater than the denominator of $\frac{x^{2}}{25}$
Therefore, the major axis is along the $y-$ axis, while the minor axis is along the $x-$ axis.
On comparing the given equation with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ we obtain $b=5$ and $a=10$
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{100-25}=\sqrt{75}=5 \sqrt{3}$
Therefore,
The coordinates of the foci are $(0, \,\pm 5 \sqrt{3})$
The coordinates of the vertices are $(0,\,±10)$
Length of major axis $=2 a=20$
Length of minor axis $=2 b=10$
Eccentricity, $e=\frac{c}{a}=\frac{5 \sqrt{3}}{10}=\frac{\sqrt{3}}{2}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 25}{10}=5$
ઉપવલય $4x^2 + 9y^2 = 36$ પરના ક્યાં બિંદુ આગળ આંતરેલ અભિલંબ રેખા $4x -2y-5 = 0$ ને સમાંતર થાય ?
ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ ની નાભિઓ અને અતિવલય
$\frac{{{x^2}}}{{144}}\,\, - \,\,\frac{{{y^2}}}{{81}}\,\, = \,\,\frac{1}{{25}}$ ની નાભીઓ સમાન હોય તો ${b^2}$ નું મૂલ્ય:
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$
જેની પ્રધાનઅક્ષ $x -$ અક્ષ અને કેન્દ્ર ઉંગમબિંદુ હોય તેવા ઉપવલયના નાભીલંબની લંબાઈ $8$ છે જો બંને નાભીઓ વચ્ચેનું અંતર તેની ગૌણઅક્ષની લંબાઈ જેટલું હોય તો નીચેનામાંથી ક્યું બિંદુ ઉપવલય પર આવેલ નથી ?
જે ઉપવલયનું એક શિરોબિંદુ $(0, 7)$ હોય અને નિયામિકા $y = 12 $ હોય, તે ઉપવલયનું સમીકરણ....