બિંદુઓ $(0, 0), (1, 0)$ માંથી પસાર થતા અને વર્તૂળ $x^2 + y^2 = 9$ ને સ્પર્શતા વર્તૂળનું કેન્દ્ર ....
$(3/2, 1/2)$
$(1/2, 3/2)$
$(1/2, 1/2)$
$\left( {1/2\,\,, \pm \,\,\sqrt 2 } \right)$
જે વર્તૂળની ત્રિજ્યા $3$ હોય અને જે $x^{2} + y^{2} - 4x - 6y - 12 = 0 $ વર્તૂળને બિંદુ $(-1, -1)$ આગળ અંદરથી સ્પર્શેં તેવા વર્તૂળનું સમીકરણ શોધો.
અહી $r_{1}$ અને $r_{2}$ એ વર્તુળોની ન્યૂનતમ અને મહતમ ત્રિજ્યાઓ છે કે જે બિંદુ $(-4,1)$ માંથી પસાર થાય અને જેના કેન્દ્રો વર્તુળ $x^{2}+y^{2}+2 x+4 y-4= 0$ પર આવેલ છે જો $\frac{r_{1}}{r_{2}}=a+b \sqrt{2}$ હોય તો $a+b$ ની કિમંત મેળવો.
ત્રણ વર્તુળ જેમની ત્રિજ્યા અનુક્રમે $a, b, c\, ( a < b < c )$ છે તે એકબીજાને બહારથી સ્પર્શે છે જો તેમનો સામાન્ય સ્પર્શક $x -$ અક્ષ હોય તો
વર્તુળ $x^2 + y^2 - 4x - 6y - 21 = 0$ અને $3x + 4y + 5 = 0$ ના છેદબિંદુ અને બિંદુ $(1,2)$ માંથી પસાર થતાં વર્તુળનું સમીકરણ મેળવો.
બે વર્તૂળો $x^2 + y^2 - x + 1 = 0 $ અને $ 3 (x^2 + y^2) + y - 1 = 0 $ ની મૂલાક્ષ (Radical axes) નું સમીકરણ મેળવો.