જો રેખા $y = x + 3$ એ વર્તૂળ $x^2 + y^2 = a^2$ ને બે બિંદુઓ $A$ અને $B$ માં છેદે તો $AB$ વ્યાસ હોય તેવા વર્તૂળનું સમીકરણ . . . . . .
$x^2 + y^2 + 3x- 3y - a^2+ 9 = 0$
$x^2 + y^2 + 3x -3y + a^2 + 9 = 0$
$x^2 + y^2- 3x + 3y - a^2 + 9 = 0$
એકપણ નહિ
જો વર્તૂળો $x^2 + y^2 + 2ax + cy + a = 0 $ અને $ x^2 + y^2 - 3ax + dy - 1 = 0$ બે ભિન્ન બિંદુઓ $P $ અને $Q $ માં છેદે તો $a$ ના કયા મુલ્ય માટે રેખા $5x + 6y - a = 0$ એ બિંદુ $P$ અને $Q$ માંથી પસાર થાય ?
જો વર્તુળો ${x^2}\, + {y^2}\, - 16x\, - 20y\, + \,164\,\, = \,\,{r^2}$ અને ${(x - 4)^2} + {(y - 7)^2} = 36$ બે ભિન્ન બિંદુઓમાં છેદે તો ,
સમીકરણ $x^{2}+y^{2}+p x+(1-p) y+5=0$ એ વર્તુળ દર્શાવે છે કે જેની ચલિત ત્રીજ્યા $\mathrm{r} \in(0,5]$ છે તો ગણ $S=\left\{q: q=p^{2}\right.$ અને $\mathrm{q}$ એ પૂર્ણાંક છે. $\}$ ની સભ્ય સંખ્યા મેળવો.
જો વર્તુળ $C$ એ બિંદુ $(4, 0)$ માંથી પસાર થતું હોય અને વર્તુળ $x^2 + y^2 + 4x - 6y - 12 = 0$ ને બહારથી બિંદુ $(1, -1)$ માં સ્પર્શે તો વર્તુળ $C$ ની ત્રિજ્યા મેળવો.
આપેલ વિધાન પૈકી બંને વિધાન માટે સત્ય વિધાન પસંદ કરો.
$x^{2}+y^{2}-10 x-10 y+41=0$ અને $x^{2}+y^{2}-16 x-10 y+80=0$