જે વર્તૂળની ત્રિજ્યા $3$ હોય અને જે $x^{2} + y^{2} - 4x - 6y - 12 = 0 $ વર્તૂળને બિંદુ $(-1, -1)$ આગળ અંદરથી સ્પર્શેં તેવા વર્તૂળનું સમીકરણ શોધો.

  • A

    ${\left( {x\,\, - \,\,\frac{4}{5}} \right)^2}\,\, + \;\,{\left( {y\,\, + \;\,\frac{7}{5}} \right)^2}\,\, = \,\,{3^2}$

  • B

    ${\left( {x\,\, - \,\,\frac{4}{5}} \right)^2}\,\, + \;\,{\left( {y\,\, - \;\,\frac{7}{5}} \right)^2}\,\, = \,\,{3^2}$

  • C

    $(x - 8)^{2}+ (y - 1)^{2}= 32$

  • D

    એકપણ નહિ

Similar Questions

વર્તુળો પરના બિંદુઓ $P _{1}$ અને $P _{2}$ વચ્ચેનું ન્યૂનતમ અંતર મેળવો કે જેમાં એક બિંદુ$P _{1}$  એક વર્તુળ પર અને બીજું બિંદુ $P _{2}$ એ બીજા વર્તુળ પર વર્તુળ પર આવેલ છે. જ્યાં વર્તુળોના સમીકરણો $x^{2}+y^{2}-10 x-10 y+41=0$ ; $x^{2}+y^{2}-24 x-10 y+160=0$ છે.

  • [JEE MAIN 2021]

બિંદુ  $(1, 1) $ માંથી અને વર્તૂળો  $x^2 + y^2 = 6$  અને  $x^2 + y^2 -6x + 8 = 0$  ના છેદ બિંદુમાંથી પસાર થતા વર્તૂળનું સમીકરણ....

જો વર્તૂળ, બિંદુ $(a, b)$ માંથી પસાર થાય અને વર્તૂળ $x^{2} + y^{2} = 4$ ને લંબરૂપે છેદે, તો તેના કેન્દ્રનો બિંદુ પથ....

વર્તૂળો ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ અને ${x^2} + {y^2} - 8x + 2y + 8 = 0$ બે ભિન્ન બિંદુમાં છેદે તો,

  • [AIEEE 2003]

જો વર્તુળ $C$ એ બિંદુ $(4, 0)$ માંથી પસાર થતું હોય અને વર્તુળ $x^2 + y^2 + 4x - 6y - 12 = 0$ ને બહારથી બિંદુ $(1, -1)$ માં સ્પર્શે તો વર્તુળ $C$ ની ત્રિજ્યા મેળવો. 

  • [JEE MAIN 2013]