અતિવલય $x^2 - 2y^2 - 2 = 0$ ના કોઇ બિંદુ પરથી તેના અનંત સ્પર્શકો પર દોરેલા લંબની લંબાઈનો ગુણાકાર કેટલો થાય ?
$\frac{1}{2}$
$\frac{2}{3}$
$\frac{3}{2}$
$2$
આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો : નાભિઓ $(\pm 5,\,0),$ મુખ્ય અક્ષની લંબાઈ $8$
જો પ્રમાણિત અતિવલયની ઉત્કેન્દ્ર્તા $2$ હોય જે બિંદુ $(4, 6)$ માંથી પસાર થતું હોય તો બિંદુ $(4, 6)$ આગળ અતિવલયનો સ્પર્શક મેળવો.
ધારો કે અતિવલય ${x^2}\,\, - \,\,2{y^2}\,\, - \,\,2\sqrt 2 \,x\,\, - \,\,4\,\,\sqrt 2 \,\,y\,\, - \,\,6\,\, = \,\,0$ નું એક શિરોબિંદુ $A$ આગળ છે. બિંદુ $A$ ની નજીક નું નાભિલંબનું એક અંત્યબિંદુ $B$ લો. જો $C$ એ બિંદુ $A$ ની સૌથી નજીકની અતિવલયની નાભિ હોય, તો ત્રિકોણ $ABC$ નું ક્ષેત્રફળ મેળવો.
અતિવલય $\frac{{{x^2}}}{{{{\cos }^2}\alpha }}\,\, - \,\,\frac{{{y^2}}}{{{{\sin }^2}\,\,\alpha }}\, = \,\,1\,$ માટે જ્યારે $\,\alpha $ બદલાતો હોય ત્યારે નીચેના માંથી કયું પદ અચળ રહે.
અતિવલય $H$ નાં શિરોબિંદુઓ $(\pm \,6,0)$ અને તેની ઉત્કેન્દ્રતા $\frac{\sqrt{5}}{2}$ છે. ધારો કે $N$ એ,પ્રથમ ચરણમાં આવેલ કોઈક બિંદુ આગળ $H$ નો અભિલંબ છે અને તે રેખા $\sqrt{2} x+y=2 \sqrt{2}$ ને સમાંતર છે. જો $H$ અને $y$-અક્ષ વચ્યેના $N$ ના રેખાખંડની લંબાઈ $d$ હોય, તો $d^2=............$